An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task

Hongfei Zhang, Zehui Wang, Yinhu Yu, Haojun Yin, Chuangquan Chen, Hongtao Wang
{"title":"An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task","authors":"Hongfei Zhang, Zehui Wang, Yinhu Yu, Haojun Yin, Chuangquan Chen, Hongtao Wang","doi":"10.26599/BSA.2022.9050007","DOIUrl":null,"url":null,"abstract":"As a new type of brain–computer interface (BCI), the rapid serial visual presentation (RSVP) paradigm has attracted significant attention. The mechanism of RSVP is detecting the P300 component corresponding to the target image to realize fast and correct recognition. This paper proposed an improved EEGNet model to achieve good performance in offline and online data. Specifically, the data were filtered by xDAWN to enhance the signal-to-noise ratio of the electroencephalogram (EEG) signals. The focal loss function was used instead of the cross-entropy loss function to solve the classification problems of unbalanced samples. Additionally, the subject-specific data were fed to the improved EEGNet model to obtain a subject-specific model. We applied the proposed model at the BCI Controlled Robot Contest in World Robot Contest 2021 and won the second place. The average recall rate of the four participants reached 51.56% in triple classification. In the offline data benchmark dataset (64 subjects-RSVP tasks), the average recall rates of groups A and B reached 76.07% and 78.11%, respectively. We provided an alternative method to identify targets based on the RSVP paradigm.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2022.9050007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As a new type of brain–computer interface (BCI), the rapid serial visual presentation (RSVP) paradigm has attracted significant attention. The mechanism of RSVP is detecting the P300 component corresponding to the target image to realize fast and correct recognition. This paper proposed an improved EEGNet model to achieve good performance in offline and online data. Specifically, the data were filtered by xDAWN to enhance the signal-to-noise ratio of the electroencephalogram (EEG) signals. The focal loss function was used instead of the cross-entropy loss function to solve the classification problems of unbalanced samples. Additionally, the subject-specific data were fed to the improved EEGNet model to obtain a subject-specific model. We applied the proposed model at the BCI Controlled Robot Contest in World Robot Contest 2021 and won the second place. The average recall rate of the four participants reached 51.56% in triple classification. In the offline data benchmark dataset (64 subjects-RSVP tasks), the average recall rates of groups A and B reached 76.07% and 78.11%, respectively. We provided an alternative method to identify targets based on the RSVP paradigm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的EEGNet用于快速序列视觉呈现任务中的单次试验EEG分类
作为一种新型的脑机接口(BCI),快速序列视觉呈现(RSVP)范式引起了人们的极大关注。RSVP的机制是检测目标图像对应的P300成分,以实现快速准确的识别。本文提出了一种改进的EEGNet模型,以实现离线和在线数据的良好性能。具体地,通过xDAWN对数据进行滤波,以增强脑电图(EEG)信号的信噪比。使用焦点损失函数代替交叉熵损失函数来解决不平衡样本的分类问题。此外,将受试者特异性数据输入改进的EEGNet模型,以获得受试者特异性模型。我们在2021年世界机器人大赛BCI控制机器人大赛上应用了所提出的模型,并获得了第二名。在三重分类中,四名参与者的平均回忆率达到51.56%。在离线数据基准数据集(64名受试者RSVP任务)中,A组和B组的平均召回率分别达到76.07%和78.11%。我们提供了一种基于RSVP范式识别目标的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1