Ahmed Murtadha, Shengfeng Pan, Wen Bo, Jianlin Su, Xinxin Cao, Wenze Zhang, Yunfeng Liu
{"title":"Rank-Aware Negative Training for Semi-Supervised Text Classification","authors":"Ahmed Murtadha, Shengfeng Pan, Wen Bo, Jianlin Su, Xinxin Cao, Wenze Zhang, Yunfeng Liu","doi":"10.1162/tacl_a_00574","DOIUrl":null,"url":null,"abstract":"Abstract Semi-supervised text classification-based paradigms (SSTC) typically employ the spirit of self-training. The key idea is to train a deep classifier on limited labeled texts and then iteratively predict the unlabeled texts as their pseudo-labels for further training. However, the performance is largely affected by the accuracy of pseudo-labels, which may not be significant in real-world scenarios. This paper presents a Rank-aware Negative Training (RNT) framework to address SSTC in learning with noisy label settings. To alleviate the noisy information, we adapt a reasoning with uncertainty-based approach to rank the unlabeled texts based on the evidential support received from the labeled texts. Moreover, we propose the use of negative training to train RNT based on the concept that “the input instance does not belong to the complementary label”. A complementary label is randomly selected from all labels except the label on-target. Intuitively, the probability of a true label serving as a complementary label is low and thus provides less noisy information during the training, resulting in better performance on the test data. Finally, we evaluate the proposed solution on various text classification benchmark datasets. Our extensive experiments show that it consistently overcomes the state-of-the-art alternatives in most scenarios and achieves competitive performance in the others. The code of RNT is publicly available on GitHub.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"771-786"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00574","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Semi-supervised text classification-based paradigms (SSTC) typically employ the spirit of self-training. The key idea is to train a deep classifier on limited labeled texts and then iteratively predict the unlabeled texts as their pseudo-labels for further training. However, the performance is largely affected by the accuracy of pseudo-labels, which may not be significant in real-world scenarios. This paper presents a Rank-aware Negative Training (RNT) framework to address SSTC in learning with noisy label settings. To alleviate the noisy information, we adapt a reasoning with uncertainty-based approach to rank the unlabeled texts based on the evidential support received from the labeled texts. Moreover, we propose the use of negative training to train RNT based on the concept that “the input instance does not belong to the complementary label”. A complementary label is randomly selected from all labels except the label on-target. Intuitively, the probability of a true label serving as a complementary label is low and thus provides less noisy information during the training, resulting in better performance on the test data. Finally, we evaluate the proposed solution on various text classification benchmark datasets. Our extensive experiments show that it consistently overcomes the state-of-the-art alternatives in most scenarios and achieves competitive performance in the others. The code of RNT is publicly available on GitHub.
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.