Superior artificial synaptic properties applicable to neuromorphic computing system in HfOx-based resistive memory with high recognition rates

IF 4.703 3区 材料科学 Nanoscale Research Letters Pub Date : 2023-06-24 DOI:10.1186/s11671-023-03862-0
Hyun Kyu Seo, Su Yeon Lee, Min Kyu Yang
{"title":"Superior artificial synaptic properties applicable to neuromorphic computing system in HfOx-based resistive memory with high recognition rates","authors":"Hyun Kyu Seo,&nbsp;Su Yeon Lee,&nbsp;Min Kyu Yang","doi":"10.1186/s11671-023-03862-0","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of artificial intelligence and the importance of big data processing, research is actively underway to break away from data bottlenecks and modern Von Neumann architecture computing structures that consume considerable energy. Among these, hardware technology for neuromorphic computing is in the spotlight as a next-generation intelligent hardware system because it can efficiently process large amounts of data with low power consumption by simulating the brain’s calculation algorithm. In addition to memory devices with existing commercial structures, various next-generation memory devices, including memristors, have been studied to implement neuromorphic computing. In this study, we evaluated the synaptic characteristics of a resistive random access memory (ReRAM) with a Ru/HfO<sub><i>x</i></sub>/TiN structure. Under a series of presynaptic spikes, the device successfully exhibited remarkable long-term plasticity and excellent nonlinearity properties. This synaptic device has a high operating speed (20 ns, 50 ns), long data retention time (&gt; 2 h @85 ℃) and high recognition rate (94.7%). Therefore, we propose that memory and learning capabilities can be used as promising HfO<sub><i>x</i></sub>-based memristors in next-generation artificial neuromorphic computing systems.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03862-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03862-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of artificial intelligence and the importance of big data processing, research is actively underway to break away from data bottlenecks and modern Von Neumann architecture computing structures that consume considerable energy. Among these, hardware technology for neuromorphic computing is in the spotlight as a next-generation intelligent hardware system because it can efficiently process large amounts of data with low power consumption by simulating the brain’s calculation algorithm. In addition to memory devices with existing commercial structures, various next-generation memory devices, including memristors, have been studied to implement neuromorphic computing. In this study, we evaluated the synaptic characteristics of a resistive random access memory (ReRAM) with a Ru/HfOx/TiN structure. Under a series of presynaptic spikes, the device successfully exhibited remarkable long-term plasticity and excellent nonlinearity properties. This synaptic device has a high operating speed (20 ns, 50 ns), long data retention time (> 2 h @85 ℃) and high recognition rate (94.7%). Therefore, we propose that memory and learning capabilities can be used as promising HfOx-based memristors in next-generation artificial neuromorphic computing systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优越的人工突触特性适用于基于hfox的电阻性记忆的神经形态计算系统,具有高识别率
随着人工智能的发展和大数据处理的重要性,打破数据瓶颈和现代冯·诺伊曼架构计算结构消耗大量能源的研究正在积极进行。其中,神经形态计算的硬件技术作为下一代智能硬件系统备受关注,因为它可以通过模拟大脑的计算算法,以低功耗高效地处理大量数据。除了具有现有商业结构的存储器件外,各种下一代存储器件,包括记忆电阻器,已经被研究用于实现神经形态计算。在这项研究中,我们评估了Ru/HfOx/TiN结构的电阻随机存取存储器(ReRAM)的突触特性。在一系列突触前尖峰作用下,该器件成功地表现出了显著的长期可塑性和优异的非线性特性。该突触装置具有操作速度快(20 ns、50 ns)、数据保留时间长(85℃时2 h)、识别率高(94.7%)等特点。因此,我们提出记忆和学习能力可以用作下一代人工神经形态计算系统中有前途的基于hfox的记忆电阻器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity Viscoelastic modelling and analysis of two-dimensional woven CNT-based multiscale fibre reinforced composite material system InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays Transport properties of mechanochemically synthesized copper (I) selenide for potential applications in energy conversion and storage Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1