Neilan's divergence‐free finite elements for Stokes equations on tetrahedral grids

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED Numerical Methods for Partial Differential Equations Pub Date : 2023-06-28 DOI:10.1002/num.23055
Shangyou Zhang
{"title":"Neilan's divergence‐free finite elements for Stokes equations on tetrahedral grids","authors":"Shangyou Zhang","doi":"10.1002/num.23055","DOIUrl":null,"url":null,"abstract":"The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23055","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四面体网格上Stokes方程的Neilan无发散有限元
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
期刊最新文献
Compactness results for a Dirichlet energy of nonlocal gradient with applications Layer‐parallel training of residual networks with auxiliary variable networks Error bound of the multilevel fast multipole method for 3‐D scattering problems An explicit fourth‐order hybrid‐variable method for Euler equations with a residual‐consistent viscosity Exponential time difference methods with spatial exponential approximations for solving boundary layer problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1