Osmo-priming in tomato seeds down-regulates genes associated with stress response and leads to reduction in longevity

IF 2.1 3区 生物学 Q2 PLANT SCIENCES Seed Science Research Pub Date : 2021-07-29 DOI:10.1017/S0960258521000179
Ana C.P. Petronilio, T. B. Batista, E. A. Amaral da Silva
{"title":"Osmo-priming in tomato seeds down-regulates genes associated with stress response and leads to reduction in longevity","authors":"Ana C.P. Petronilio, T. B. Batista, E. A. Amaral da Silva","doi":"10.1017/S0960258521000179","DOIUrl":null,"url":null,"abstract":"Abstract Tomato seeds subjected to osmo-priming show fast and more uniform germination. However, osmo-priming reduces seed longevity, which is a complex seed physiological attribute influenced by several mechanisms, including response to stress. Thus, to have new insights as to why osmo-primed tomato seeds show a short life span, we performed a transcript analysis during their priming. For that, we performed gene expression studies of the heat-shock protein family genes that were previously reported to be associated with the enhancement of longevity in primed tomato seeds. Physiological assays of germination, vigour and longevity tests were used to support the data. The results show that the short life span of osmo-primed tomato seeds is related to the decrease in the expression of transcripts associated with response to stress during the priming treatment. These results are important because they add information regarding which seed longevity mechanisms are impacted by the priming treatment. In parallel, it will allow the use of these genes as markers to monitor longevity in osmo-primed tomato seeds.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"211 - 216"},"PeriodicalIF":2.1000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0960258521000179","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0960258521000179","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Tomato seeds subjected to osmo-priming show fast and more uniform germination. However, osmo-priming reduces seed longevity, which is a complex seed physiological attribute influenced by several mechanisms, including response to stress. Thus, to have new insights as to why osmo-primed tomato seeds show a short life span, we performed a transcript analysis during their priming. For that, we performed gene expression studies of the heat-shock protein family genes that were previously reported to be associated with the enhancement of longevity in primed tomato seeds. Physiological assays of germination, vigour and longevity tests were used to support the data. The results show that the short life span of osmo-primed tomato seeds is related to the decrease in the expression of transcripts associated with response to stress during the priming treatment. These results are important because they add information regarding which seed longevity mechanisms are impacted by the priming treatment. In parallel, it will allow the use of these genes as markers to monitor longevity in osmo-primed tomato seeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
番茄种子Osmo启动下调与应激反应相关的基因,导致寿命缩短
摘要番茄种子经渗透启动后,发芽速度快、发芽均匀。然而,渗透启动降低了种子寿命,这是一个复杂的种子生理属性,受到多种机制的影响,包括对压力的反应。因此,为了对渗透压引发的番茄种子为什么寿命短有新的见解,我们在其引发过程中进行了转录分析。为此,我们对热休克蛋白家族基因进行了基因表达研究,这些基因先前被报道与提高番茄种子的寿命有关。使用发芽、活力和寿命测试的生理测定来支持数据。结果表明,渗透引发的番茄种子寿命短与引发处理过程中与应激反应相关的转录物表达减少有关。这些结果很重要,因为它们增加了关于哪些种子寿命机制受到启动处理影响的信息。同时,它将允许使用这些基因作为标记来监测渗透引发番茄种子的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seed Science Research
Seed Science Research 生物-植物科学
CiteScore
3.60
自引率
4.80%
发文量
23
审稿时长
>12 weeks
期刊介绍: Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.
期刊最新文献
The oxidative phosphorylation is regulated by ubiquitination under slow-cooling treatment in hydrated lettuce (Lactuca sativa) seeds Development of an extraction method for the identification of peptides in the spermosphere of common bean (Phaseolus vulgaris L.) Effects of Korean water deer (Hydropotes inermis argyropus) feces on seed germination and early seedling growth: insights into their contribution to seed dispersal Removal of the mucilage reduces intact seed passage through the digestive system of birds Pre- and post-harvest temperatures influence the germination response to supra-optimal temperature in contrasting tomato (Solanum lycopersicum) MAGIC genotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1