{"title":"Causal inference for multiple treatments using fractional factorial designs","authors":"Nicole E. Pashley, Marie-Abèle C. Bind","doi":"10.1002/cjs.11734","DOIUrl":null,"url":null,"abstract":"<p>We consider the design and analysis of multi-factor experiments using fractional factorial and incomplete designs within the potential outcome framework. These designs are particularly useful when limited resources make running a full factorial design infeasible. We connect our design-based methods to standard regression methods. We further motivate the usefulness of these designs in multi-factor observational studies, where certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. Therefore, conceptualizing a hypothetical fractional factorial experiment instead of a full factorial experiment allows for appropriate analysis in those settings. We illustrate our approach using biomedical data from the 2003–2004 cycle of the National Health and Nutrition Examination Survey to examine the effects of four common pesticides on body mass index.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11734","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
We consider the design and analysis of multi-factor experiments using fractional factorial and incomplete designs within the potential outcome framework. These designs are particularly useful when limited resources make running a full factorial design infeasible. We connect our design-based methods to standard regression methods. We further motivate the usefulness of these designs in multi-factor observational studies, where certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. Therefore, conceptualizing a hypothetical fractional factorial experiment instead of a full factorial experiment allows for appropriate analysis in those settings. We illustrate our approach using biomedical data from the 2003–2004 cycle of the National Health and Nutrition Examination Survey to examine the effects of four common pesticides on body mass index.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.