SG-Shuffle: Multi-aspect Shuffle Transformer for Scene Graph Generation

Anh Duc Bui, S. Han, Josiah Poon
{"title":"SG-Shuffle: Multi-aspect Shuffle Transformer for Scene Graph Generation","authors":"Anh Duc Bui, S. Han, Josiah Poon","doi":"10.48550/arXiv.2211.04773","DOIUrl":null,"url":null,"abstract":". Scene Graph Generation (SGG) serves a comprehensive representation of the images for human understanding as well as visual understanding tasks. Due to the long tail bias problem of the object and predicate labels in the available annotated data, the scene graph generated from current methodologies can be biased toward common, non-informative relationship labels. Relationship can sometimes be non-mutually exclusive, which can be described from multiple perspectives like geometrical relationships or semantic relationships, making it even more challenging to predict the most suitable relationship label. In this work, we proposed the SG-Shuffle pipeline for scene graph generation with 3 components: 1) Parallel Transformer Encoder, which learns to predict object relationships in a more exclusive manner by grouping relationship labels into groups of similar purpose; 2) Shuffle Transformer, which learns to select the final relationship labels from the category-specific feature generated in the previous step; and 3) Weighted CE loss, used to alleviate the training bias caused by the imbalanced dataset.","PeriodicalId":91448,"journal":{"name":"Applied informatics","volume":"1 1","pages":"87-101"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.04773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Scene Graph Generation (SGG) serves a comprehensive representation of the images for human understanding as well as visual understanding tasks. Due to the long tail bias problem of the object and predicate labels in the available annotated data, the scene graph generated from current methodologies can be biased toward common, non-informative relationship labels. Relationship can sometimes be non-mutually exclusive, which can be described from multiple perspectives like geometrical relationships or semantic relationships, making it even more challenging to predict the most suitable relationship label. In this work, we proposed the SG-Shuffle pipeline for scene graph generation with 3 components: 1) Parallel Transformer Encoder, which learns to predict object relationships in a more exclusive manner by grouping relationship labels into groups of similar purpose; 2) Shuffle Transformer, which learns to select the final relationship labels from the category-specific feature generated in the previous step; and 3) Weighted CE loss, used to alleviate the training bias caused by the imbalanced dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SG Shuffle:用于场景图生成的多方面Shuffle转换器
场景图生成(SGG)为人类理解以及视觉理解任务提供图像的综合表示。由于可用注释数据中对象和谓词标签的长尾偏误问题,根据当前方法生成的场景图可能偏向于常见的、非信息性的关系标签。关系有时可能是非互斥的,可以从几何关系或语义关系等多个角度进行描述,这使得预测最合适的关系标签变得更加困难。在这项工作中,我们提出了用于场景图生成的SG-Shu-sulue管道,该管道由3个组件组成:1)并行转换器编码器,它通过将关系标签分组到具有类似目的的组中,学习以更排他性的方式预测对象关系;2) Shu sulu e Transformer,它学习从上一步生成的类别特定特征中选择最终的关系标签;以及3)加权CE损失,用于减轻由不平衡数据集引起的训练偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Financial Literacy via Semi-supervised Learning XC-NAS: A New Cellular Encoding Approach for Neural Architecture Search of Multi-path Convolutional Neural Networks SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining Environments: A Novel Dataset and ROS-Based Automatic Annotation Pipeline Approximating Solutions to the Knapsack Problem Using the Lagrangian Dual Framework Improvement of Arc Consistency in Asynchronous Forward Bounding Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1