Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach.

Dystonia Pub Date : 2023-01-01 Epub Date: 2023-06-08 DOI:10.3389/dyst.2023.11305
J R Younce, R H Cascella, B D Berman, H A Jinnah, S Bellows, J Feuerstein, A Wagle Shukla, A Mahajan, F C F Chang, K R Duque, S Reich, S Pirio Richardson, A Deik, N Stover, J M Luna, S A Norris
{"title":"Anatomical categorization of isolated non-focal dystonia: novel and existing patterns using a data-driven approach.","authors":"J R Younce, R H Cascella, B D Berman, H A Jinnah, S Bellows, J Feuerstein, A Wagle Shukla, A Mahajan, F C F Chang, K R Duque, S Reich, S Pirio Richardson, A Deik, N Stover, J M Luna, S A Norris","doi":"10.3389/dyst.2023.11305","DOIUrl":null,"url":null,"abstract":"<p><p>According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency and co-occurrence rates of non-focal dystonia in pre-defined body regions using the Dystonia Coalition (DC) dataset. We analyzed 1,618 participants with isolated non-focal dystonia from the DC database. The analytic approach included construction of frequency tables, variable-wise analysis using hierarchical clustering and independent component analysis (ICA), and case-wise consensus hierarchical clustering to describe associations and clusters for dystonia affecting any combination of eighteen pre-defined body regions. Variable-wise hierarchical clustering demonstrated closest relationships between bilateral upper legs (distance = 0.40), upper and lower face (distance = 0.45), bilateral hands (distance = 0.53), and bilateral feet (distance = 0.53). ICA demonstrated clear grouping for the a) bilateral hands, b) neck, and c) upper and lower face. Case-wise consensus hierarchical clustering at k = 9 identified 3 major clusters. Major clusters consisted primarily of a) cervical dystonia with nearby regions, b) bilateral hand dystonia, and c) cranial dystonia. Our data-driven approach in a large dataset of isolated non-focal dystonia reinforces common segmental patterns in cranial and cervical regions. We observed unexpectedly strong associations between bilateral upper or lower limbs, which suggests that symmetric multifocal patterns may represent a previously underrecognized dystonia subtype.</p>","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dystonia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/dyst.2023.11305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to expert consensus, dystonia can be classified as focal, segmental, multifocal, and generalized, based on the affected body distribution. To provide an empirical and data-driven approach to categorizing these distributions, we used a data-driven clustering approach to compare frequency and co-occurrence rates of non-focal dystonia in pre-defined body regions using the Dystonia Coalition (DC) dataset. We analyzed 1,618 participants with isolated non-focal dystonia from the DC database. The analytic approach included construction of frequency tables, variable-wise analysis using hierarchical clustering and independent component analysis (ICA), and case-wise consensus hierarchical clustering to describe associations and clusters for dystonia affecting any combination of eighteen pre-defined body regions. Variable-wise hierarchical clustering demonstrated closest relationships between bilateral upper legs (distance = 0.40), upper and lower face (distance = 0.45), bilateral hands (distance = 0.53), and bilateral feet (distance = 0.53). ICA demonstrated clear grouping for the a) bilateral hands, b) neck, and c) upper and lower face. Case-wise consensus hierarchical clustering at k = 9 identified 3 major clusters. Major clusters consisted primarily of a) cervical dystonia with nearby regions, b) bilateral hand dystonia, and c) cranial dystonia. Our data-driven approach in a large dataset of isolated non-focal dystonia reinforces common segmental patterns in cranial and cervical regions. We observed unexpectedly strong associations between bilateral upper or lower limbs, which suggests that symmetric multifocal patterns may represent a previously underrecognized dystonia subtype.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孤立性非局灶性肌张力障碍的解剖学分类:使用数据驱动方法的新模式和现有模式
根据专家共识,肌张力障碍可根据受影响的身体分布分为局灶性、节段性、多灶性和全身性。为了提供一种经验和数据驱动的方法来对这些分布进行分类,我们使用数据驱动的聚类方法,使用肌张力障碍联盟(DC)数据集比较预定义身体区域中非局灶性肌张力障碍的频率和共现率。我们分析了来自DC数据库的1618名孤立性非局灶性肌张力障碍参与者。分析方法包括构建频率表、使用层次聚类和独立成分分析(ICA)的变量分析,以及描述肌张力障碍的关联和聚类的案例一致性层次聚类,这些关联和聚类影响18个预定义身体区域的任何组合。变量层次聚类显示双侧上肢(距离=0.40)、上下脸(距离=0.45)、双手(距离=0.53)和双脚(距离=0.73)之间的关系最为密切。ICA显示a)双手、b)颈部和c)上下脸之间的分组清晰。在k=9的情况下,一致性分层聚类确定了3个主要聚类。主要集群主要包括a)邻近区域的颈部肌张力障碍,b)双侧手部肌张力障碍和c)颅骨肌张力障碍。在一个孤立的非局灶性肌张力障碍的大型数据集中,我们的数据驱动方法强化了颅骨和颈部常见的节段模式。我们观察到双侧上肢或下肢之间出乎意料的强烈关联,这表明对称的多焦点模式可能代表了以前被低估的肌张力障碍亚型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of botulinum neurotoxin on regularity of head oscillations in cervical dystonia ε-sarcoglycan myoclonus-dystonia—overview of neurophysiological, behavioral, and imaging characteristics Unraveling dystonia circuitry in rodent models using novel neuromodulation techniques Piecing together a complex puzzle: 5 key challenges in basic dystonia research Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1