Keith Stakes, Joseph M. Willi, Ryan Chaffer, Daniel Madrzykowski, Gavin P. Horn
{"title":"Exposure Risks and Potential Control Measures for a Fire Behavior Lab Training Structure: Part A—Fire Dynamics and Thermal Risk","authors":"Keith Stakes, Joseph M. Willi, Ryan Chaffer, Daniel Madrzykowski, Gavin P. Horn","doi":"10.1007/s10694-023-01414-7","DOIUrl":null,"url":null,"abstract":"<div><p>National Fire Protection Association standard 1403 provides the fire service with guidance for conducting effective live fire training with the goal of minimizing health and safety hazards. The document provides guidelines for materials to be included in the training fuel package, but the fire service has raised questions about the use of specific types of wood products for this purpose. In this study, the fire dynamics generated when utilizing five different Class A materials that have been historically employed as training fuels [low density wood fiberboard, oriented strand board (OSB), pallets, particle board, plywood] in a single compartment fire training structure (Fire Behavior Lab) were characterized. A specific focus was placed on understanding the thermal and visual environment created for firefighters located at typical locations for instructors (front and rear of structure) and students (middle of the structure). The pallet fuel package required the longest time to transition through the six ventilation cycles while the OSB fuel package was the quickest. Additionally, the most consistent fire dynamics were demonstrated with the OSB fuel followed by particle board and plywood, while fiberboard and pallets resulted in less repeatable flashover or rollover demonstration. The OSB fuel package resulted in the highest peak heat fluxes and pallets resulted in the lowest. The most severe exposures were measured at the front instructor location. To control thermal risks when conducting training in the Fire Behavior Lab structure, instructors and students should orient themselves as low as possible in the observation area and behind the interior baffle when possible. Considering the high radiant exposures for the front instructor location, providing a local shield and reducing the time in the training structure can also reduce risk for thermal injury or personal protective equipment damage. Overall, different fuels can impact thermal exposures to firefighters, but varying fuels also affects the consistency of the fire dynamics being presented to the firefighting students.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"59 4","pages":"2089 - 2125"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-023-01414-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-023-01414-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
National Fire Protection Association standard 1403 provides the fire service with guidance for conducting effective live fire training with the goal of minimizing health and safety hazards. The document provides guidelines for materials to be included in the training fuel package, but the fire service has raised questions about the use of specific types of wood products for this purpose. In this study, the fire dynamics generated when utilizing five different Class A materials that have been historically employed as training fuels [low density wood fiberboard, oriented strand board (OSB), pallets, particle board, plywood] in a single compartment fire training structure (Fire Behavior Lab) were characterized. A specific focus was placed on understanding the thermal and visual environment created for firefighters located at typical locations for instructors (front and rear of structure) and students (middle of the structure). The pallet fuel package required the longest time to transition through the six ventilation cycles while the OSB fuel package was the quickest. Additionally, the most consistent fire dynamics were demonstrated with the OSB fuel followed by particle board and plywood, while fiberboard and pallets resulted in less repeatable flashover or rollover demonstration. The OSB fuel package resulted in the highest peak heat fluxes and pallets resulted in the lowest. The most severe exposures were measured at the front instructor location. To control thermal risks when conducting training in the Fire Behavior Lab structure, instructors and students should orient themselves as low as possible in the observation area and behind the interior baffle when possible. Considering the high radiant exposures for the front instructor location, providing a local shield and reducing the time in the training structure can also reduce risk for thermal injury or personal protective equipment damage. Overall, different fuels can impact thermal exposures to firefighters, but varying fuels also affects the consistency of the fire dynamics being presented to the firefighting students.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.