{"title":"On the equality of periods of Kontsevich–Zagier","authors":"J. Cresson, Juan Viu-Sos","doi":"10.5802/jtnb.1204","DOIUrl":null,"url":null,"abstract":"Effective periods are defined by Kontsevich and Zagier as complex numbers whose real and imaginary parts are values of absolutely convergent integrals of Q-rational functions over Q-semi-algebraic domains in R^d. The Kontsevich-Zagier period conjecture affirms that any two different integral expressions of a given period are related by a finite sequence of transformations only using three rules respecting the rationality of the functions and domains: additions of integrals by integrands or domains, change of variables and Stokes formula. \n \nIn this paper, we discuss about possible geometric interpretations of this conjecture, viewed as a generalization of the Hilbert's third problem for compact semi-algebraic sets as well as for rational polyhedron equipped with piece-wise algebraic forms. Based on partial known results for analogous Hilbert's third problems, we study obstructions of possible geometric schemas to prove this conjecture.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1204","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective periods are defined by Kontsevich and Zagier as complex numbers whose real and imaginary parts are values of absolutely convergent integrals of Q-rational functions over Q-semi-algebraic domains in R^d. The Kontsevich-Zagier period conjecture affirms that any two different integral expressions of a given period are related by a finite sequence of transformations only using three rules respecting the rationality of the functions and domains: additions of integrals by integrands or domains, change of variables and Stokes formula.
In this paper, we discuss about possible geometric interpretations of this conjecture, viewed as a generalization of the Hilbert's third problem for compact semi-algebraic sets as well as for rational polyhedron equipped with piece-wise algebraic forms. Based on partial known results for analogous Hilbert's third problems, we study obstructions of possible geometric schemas to prove this conjecture.