{"title":"Estimation of particle size distributions in the atmosphere—analysis of Fe and Ca particles as the representative examples","authors":"Hyunwoo Youn, Kenji Miki, Ayumi Iwata, Tomoaki Okuda","doi":"10.1007/s44273-023-00002-z","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric aerosols, including primary aerosols emitted directly into the atmosphere and secondary aerosols generated in the atmosphere from various chemically complex particles, cause a variety of environmental problems such as climate change, photochemical smog formation, and a decrease in incoming solar radiation. Therefore, it is important to understand the causes of aerosol particles and their impact on human society. In particular, particle size is an important indicator of lung penetration depth, aerosol transport, and optical properties. Hence, we mathematically estimated the airborne particle size distributions of each chemical component by collecting aerosol samples from the atmosphere using two types of cyclone samplers, large and small cyclone samplers. This study’s findings also suggest that calculated changes in particle size distribution can reflect changes in particle sources. The higher resolution of the continuous functions will enable the detection of the subtle changes in particle size distributions of each chemical component, which is helpful to understand the temporal changes in the chemical properties of the airborne aerosol particles.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-023-00002-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-023-00002-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric aerosols, including primary aerosols emitted directly into the atmosphere and secondary aerosols generated in the atmosphere from various chemically complex particles, cause a variety of environmental problems such as climate change, photochemical smog formation, and a decrease in incoming solar radiation. Therefore, it is important to understand the causes of aerosol particles and their impact on human society. In particular, particle size is an important indicator of lung penetration depth, aerosol transport, and optical properties. Hence, we mathematically estimated the airborne particle size distributions of each chemical component by collecting aerosol samples from the atmosphere using two types of cyclone samplers, large and small cyclone samplers. This study’s findings also suggest that calculated changes in particle size distribution can reflect changes in particle sources. The higher resolution of the continuous functions will enable the detection of the subtle changes in particle size distributions of each chemical component, which is helpful to understand the temporal changes in the chemical properties of the airborne aerosol particles.