N. Nandhagopal, S. Navaneethan, V. Nivedita, A. Parimala, Dinesh Valluru
{"title":"Human Eye Pupil Detection System for Different IRIS Database Images","authors":"N. Nandhagopal, S. Navaneethan, V. Nivedita, A. Parimala, Dinesh Valluru","doi":"10.1166/JCTN.2021.9390","DOIUrl":null,"url":null,"abstract":"The pupil detection system plays a vital role in ophthalmology diagnosis equipments because pupil has a center place of human eye to locate the exact position. To identify the exact human eye pupil region in near infrared (NIR) images, this work proposes the Center of gravity method\n and its real time FPGA hardware implementation. The proposed work involves global threshold method to segment the pupil region from human eye and the bright spot suppression process removes the light reflections on the pupil due to the IR (Infra red) rays then the morphology dilation process\n removes unnecessary black pixels other than pupil region on the image. Finally, center of gravity (COG) method provides the exact pupil center coordinate and radius of the human eye. CASIA IRIS V4 and UBIRIS iris database images used in this work and achieved 90-95% of recognition rate.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1239-1242"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 10
Abstract
The pupil detection system plays a vital role in ophthalmology diagnosis equipments because pupil has a center place of human eye to locate the exact position. To identify the exact human eye pupil region in near infrared (NIR) images, this work proposes the Center of gravity method
and its real time FPGA hardware implementation. The proposed work involves global threshold method to segment the pupil region from human eye and the bright spot suppression process removes the light reflections on the pupil due to the IR (Infra red) rays then the morphology dilation process
removes unnecessary black pixels other than pupil region on the image. Finally, center of gravity (COG) method provides the exact pupil center coordinate and radius of the human eye. CASIA IRIS V4 and UBIRIS iris database images used in this work and achieved 90-95% of recognition rate.