Global mapping of volumetric water retention at 100, 330 and 15 000 cm suction using the WoSIS database

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES International Soil and Water Conservation Research Pub Date : 2023-06-01 DOI:10.1016/j.iswcr.2022.08.001
Maria Eliza Turek , Laura Poggio , Niels H. Batjes , Robson André Armindo , Quirijn de Jong van Lier , Luis de Sousa , Gerard B.M. Heuvelink
{"title":"Global mapping of volumetric water retention at 100, 330 and 15 000 cm suction using the WoSIS database","authors":"Maria Eliza Turek ,&nbsp;Laura Poggio ,&nbsp;Niels H. Batjes ,&nbsp;Robson André Armindo ,&nbsp;Quirijn de Jong van Lier ,&nbsp;Luis de Sousa ,&nbsp;Gerard B.M. Heuvelink","doi":"10.1016/j.iswcr.2022.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Present global maps of soil water retention (SWR) are mostly derived from pedotransfer functions (PTFs) applied to maps of other basic soil properties. As an alternative, ‘point-based’ mapping of soil water content can improve global soil data availability and quality. We developed point-based global maps with estimated uncertainty of the volumetric SWR at 100, 330 and 15 000 cm suction using measured SWR data extracted from the WoSIS Soil Profile Database together with data estimated by a random forest PTF (PTF-RF). The point data was combined with around 200 environmental covariates describing vegetation, terrain morphology, climate, geology, and hydrology using DSM. In total, we used 7292, 33 192 and 42 016 SWR point observations at 100, 330 and 15 000 cm, respectively, and complemented the dataset with 436 108 estimated values at each suction. Tenfold cross-validation yielded a Root Mean Square Error (RMSE) of 6.380, 7.112 and 6.485 10<sup>−2</sup>cm<sup>3</sup>cm<sup>−3</sup>, and a Model Efficiency Coefficient (MEC) of 0.430, 0.386, and 0.471, respectively, for 100, 330 and 15 000 cm. The results were also compared to three published global maps of SWR to evaluate differences between point-based and map-based mapping approaches. Point-based mapping performed better than the three map-based mapping approaches for 330 and 15 000 cm, while for 100 cm results were similar, possibly due to the limited number of SWR observations for 100 cm. Major sources or uncertainty identified included the geographical clustering of the data and the limitation of the covariates to represent the naturally high variation of SWR.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 2","pages":"Pages 225-239"},"PeriodicalIF":7.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633922000636","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Present global maps of soil water retention (SWR) are mostly derived from pedotransfer functions (PTFs) applied to maps of other basic soil properties. As an alternative, ‘point-based’ mapping of soil water content can improve global soil data availability and quality. We developed point-based global maps with estimated uncertainty of the volumetric SWR at 100, 330 and 15 000 cm suction using measured SWR data extracted from the WoSIS Soil Profile Database together with data estimated by a random forest PTF (PTF-RF). The point data was combined with around 200 environmental covariates describing vegetation, terrain morphology, climate, geology, and hydrology using DSM. In total, we used 7292, 33 192 and 42 016 SWR point observations at 100, 330 and 15 000 cm, respectively, and complemented the dataset with 436 108 estimated values at each suction. Tenfold cross-validation yielded a Root Mean Square Error (RMSE) of 6.380, 7.112 and 6.485 10−2cm3cm−3, and a Model Efficiency Coefficient (MEC) of 0.430, 0.386, and 0.471, respectively, for 100, 330 and 15 000 cm. The results were also compared to three published global maps of SWR to evaluate differences between point-based and map-based mapping approaches. Point-based mapping performed better than the three map-based mapping approaches for 330 and 15 000 cm, while for 100 cm results were similar, possibly due to the limited number of SWR observations for 100 cm. Major sources or uncertainty identified included the geographical clustering of the data and the limitation of the covariates to represent the naturally high variation of SWR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
100、330和15时体积保水率的全球绘图 000 cm吸力,使用WoSIS数据库
目前的土壤保水性全球地图主要来源于应用于其他基本土壤性质地图的土壤传递函数。作为一种替代方案,土壤含水量的“基于点”测绘可以提高全球土壤数据的可用性和质量。我们开发了基于点的全球地图,估计了100、330和15的体积SWR的不确定性 000cm吸力,使用从WoSIS土壤剖面数据库中提取的SWR测量数据以及由随机森林PTF(PTF-RF)估计的数据。使用DSM将点数据与大约200个描述植被、地形形态、气候、地质和水文的环境协变量相结合。我们总共使用了7292,33 192和42 在100、330和15处的016 SWR点观测 000厘米,并用436 108个估计值。对于100、330和15,十次交叉验证得出的均方根误差(RMSE)分别为6.380、7.112和6.485 10−2cm3cm−3,模型效率系数(MEC)分别为0.430、0.386和0.471 000cm。该结果还与三份已发表的SWR全球地图进行了比较,以评估基于点和基于地图的地图绘制方法之间的差异。基于点的映射比330和15的三种基于映射的映射方法执行得更好 000cm,而对于100cm的结果是相似的,这可能是由于100cm的SWR观测数量有限。确定的主要来源或不确定性包括数据的地理聚类和协变的局限性,以表示SWR的自然高变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
期刊最新文献
Editorial Board Utilizing geodetectors to identify conditioning factors for gully erosion risk in the black soil region of northeast China Automated quantification of contouring as support practice for improved soil erosion estimation considering ridges Editorial Board Three-dimensional spatiotemporal variation of soil organic carbon and its influencing factors at the basin scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1