Amodiaquine drug pressure selects nonsynonymous mutations in pantothenate kinase 1, diacylglycerol kinase, and phosphatidylinositol-4 kinase in Plasmodium berghei ANKA.
Jean Chepngetich, Brenda Muriithi, Beatrice Gachie, Kevin Thiong'o, Mercy Jepkorir, Jeremiah Gathirwa, Francis Kimani, Peter Mwitari, Daniel Kiboi
{"title":"Amodiaquine drug pressure selects nonsynonymous mutations in pantothenate kinase 1, diacylglycerol kinase, and phosphatidylinositol-4 kinase in <i>Plasmodium berghei</i> ANKA.","authors":"Jean Chepngetich, Brenda Muriithi, Beatrice Gachie, Kevin Thiong'o, Mercy Jepkorir, Jeremiah Gathirwa, Francis Kimani, Peter Mwitari, Daniel Kiboi","doi":"10.12688/openresafrica.13436.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lumefantrine (LM), piperaquine (PQ), and amodiaquine (AQ), the long-acting components of the artemisinin-based combination therapies (ACTs), are a cornerstone of malaria treatment in Africa. Studies have shown that PQ, AQ, and LM resistance may arise independently of predicted modes of action. Protein kinases have emerged as mediators of drug action and efficacy in malaria parasites; however, the link between top druggable <i>Plasmodium</i> kinases with LM, PQ, and AQ resistance remains unclear. Using LM, PQ, or AQ-resistant <i>Plasmodium berghei</i> parasites, we have evaluated the association of choline kinase (CK), pantothenate kinase 1 (PANK1), diacylglycerol kinase (DAGK), and phosphatidylinositol-4 kinase (PI4Kβ), and calcium-dependent protein kinase 1 (CDPK1) with LM, PQ, and AQ resistance in <i>Plasmodium berghei</i> ANKA.</p><p><strong>Methods: </strong>We used <i>in silico</i> bioinformatics tools to identify ligand-binding motifs, active sites, and sequence conservation across the different parasites. We then used PCR and sequencing analysis to probe for single nucleotide polymorphisms (SNPs) within the predicted functional motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1. Using qPCR analysis, we measured the mRNA amount of PANK1, DAGK, and PI4Kβ at trophozoites and schizonts stages.</p><p><strong>Results: </strong>We reveal sequence conservation and unique ligand-binding motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1 across malaria species. DAGK, PANK1, and PI4Kβ possessed nonsynonymous mutations; surprisingly, the mutations only occurred in the AQr parasites. PANK1 acquired Asn394His, while DAGK contained K270R and K292R mutations. PI4Kβ had Asp366Asn, Ser1367Arg, Tyr1394Asn and Asp1423Asn. We show downregulation of PANK1, DAGK, and PI4Kβ in the trophozoites but upregulation at the schizonts stages in the AQr parasites.</p><p><strong>Conclusions: </strong>The selective acquisition of the mutations and the differential gene expression in AQ-resistant parasites may signify proteins under AQ pressure. The role of the mutations in the resistant parasites and their impact on drug responses require investigations using reverse genetics techniques in malaria parasites.</p>","PeriodicalId":74358,"journal":{"name":"Open research Africa","volume":" ","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openresafrica.13436.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lumefantrine (LM), piperaquine (PQ), and amodiaquine (AQ), the long-acting components of the artemisinin-based combination therapies (ACTs), are a cornerstone of malaria treatment in Africa. Studies have shown that PQ, AQ, and LM resistance may arise independently of predicted modes of action. Protein kinases have emerged as mediators of drug action and efficacy in malaria parasites; however, the link between top druggable Plasmodium kinases with LM, PQ, and AQ resistance remains unclear. Using LM, PQ, or AQ-resistant Plasmodium berghei parasites, we have evaluated the association of choline kinase (CK), pantothenate kinase 1 (PANK1), diacylglycerol kinase (DAGK), and phosphatidylinositol-4 kinase (PI4Kβ), and calcium-dependent protein kinase 1 (CDPK1) with LM, PQ, and AQ resistance in Plasmodium berghei ANKA.
Methods: We used in silico bioinformatics tools to identify ligand-binding motifs, active sites, and sequence conservation across the different parasites. We then used PCR and sequencing analysis to probe for single nucleotide polymorphisms (SNPs) within the predicted functional motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1. Using qPCR analysis, we measured the mRNA amount of PANK1, DAGK, and PI4Kβ at trophozoites and schizonts stages.
Results: We reveal sequence conservation and unique ligand-binding motifs in the CK, PANK1, DAGK, PI4Kβ, and CDPK1 across malaria species. DAGK, PANK1, and PI4Kβ possessed nonsynonymous mutations; surprisingly, the mutations only occurred in the AQr parasites. PANK1 acquired Asn394His, while DAGK contained K270R and K292R mutations. PI4Kβ had Asp366Asn, Ser1367Arg, Tyr1394Asn and Asp1423Asn. We show downregulation of PANK1, DAGK, and PI4Kβ in the trophozoites but upregulation at the schizonts stages in the AQr parasites.
Conclusions: The selective acquisition of the mutations and the differential gene expression in AQ-resistant parasites may signify proteins under AQ pressure. The role of the mutations in the resistant parasites and their impact on drug responses require investigations using reverse genetics techniques in malaria parasites.