Internal dynamics in condensed matter, as studied by spin relaxation: some examples from 75 years

IF 0.8 4区 物理与天体物理 Q2 HISTORY & PHILOSOPHY OF SCIENCE The European Physical Journal H Pub Date : 2022-03-24 DOI:10.1140/epjh/s13129-021-00030-9
Erik B. Karlsson
{"title":"Internal dynamics in condensed matter, as studied by spin relaxation: some examples from 75 years","authors":"Erik B. Karlsson","doi":"10.1140/epjh/s13129-021-00030-9","DOIUrl":null,"url":null,"abstract":"<div><p>The present year 2021 celebrates the 75th anniversary of the nuclear magnetic resonance method (NMR), which has had an immense importance for several branches of physics, chemistry and biology. The splitting of resonances and the shifts in their positions are seemingly inexhaustible sources of information for organic chemistry and biology. It was first introduced for the study of <u>nuclear spins</u> and their associated magnetic properties and when it was observed that resonance lines were broadened by the action of fluctuating local magnetic fields it was first seen as a limitation for the exact determination of nuclear properties. However, it was soon realized that the broadening contained important information on the dynamics of atoms, molecules or cooperative spin systems surrounding the nuclei and spin perturbations became a well-developed tool for investigation of internal dynamics in liquids and solids, over time-ranges from seconds down to femtoseconds. The present article is an attempt to review this latter line of development and to pick out a series of examples of internal dynamics in different physical systems published over the past 75 years. Examples include motions of particles in solids, magnetic resonance imaging (MRI), critical phenomena around phase transitions, functioning of biomolecules and recent applications to spintronics and quantum computing. Other spin-based spectroscopies followed in the tracks of NMR with use of <u>electron spins</u> (in electron spin resonance ESR also called electron paramagnetic resonance EPR, and ferromagnetic resonance, FMR), <u>excited nuclear states</u> (by observation of perturbations in angular correlation of gamma-rays, PAC) and later also <u>muon spins</u> (muon spin relaxation, MuSR), from which other examples are selected.</p></div>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"47 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjh/s13129-021-00030-9.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-021-00030-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 2

Abstract

The present year 2021 celebrates the 75th anniversary of the nuclear magnetic resonance method (NMR), which has had an immense importance for several branches of physics, chemistry and biology. The splitting of resonances and the shifts in their positions are seemingly inexhaustible sources of information for organic chemistry and biology. It was first introduced for the study of nuclear spins and their associated magnetic properties and when it was observed that resonance lines were broadened by the action of fluctuating local magnetic fields it was first seen as a limitation for the exact determination of nuclear properties. However, it was soon realized that the broadening contained important information on the dynamics of atoms, molecules or cooperative spin systems surrounding the nuclei and spin perturbations became a well-developed tool for investigation of internal dynamics in liquids and solids, over time-ranges from seconds down to femtoseconds. The present article is an attempt to review this latter line of development and to pick out a series of examples of internal dynamics in different physical systems published over the past 75 years. Examples include motions of particles in solids, magnetic resonance imaging (MRI), critical phenomena around phase transitions, functioning of biomolecules and recent applications to spintronics and quantum computing. Other spin-based spectroscopies followed in the tracks of NMR with use of electron spins (in electron spin resonance ESR also called electron paramagnetic resonance EPR, and ferromagnetic resonance, FMR), excited nuclear states (by observation of perturbations in angular correlation of gamma-rays, PAC) and later also muon spins (muon spin relaxation, MuSR), from which other examples are selected.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用自旋弛豫研究的凝聚态物质的内部动力学:75年来的一些例子
2021年是核磁共振方法(NMR)诞生75周年,它对物理学、化学和生物学的几个分支都有着巨大的重要性。共振的分裂和它们位置的变化似乎是有机化学和生物学的取之不尽的信息来源。它最初是为了研究核自旋及其相关的磁性而引入的,当观察到共振线因波动的局部磁场的作用而变宽时,它首先被视为精确确定核性质的限制。然而,人们很快意识到,扩展包含了关于原子、分子或围绕原子核的合作自旋系统的动力学的重要信息,自旋微扰成为研究液体和固体内部动力学的一个很好的工具,时间范围从几秒到飞秒。本文试图回顾后一条发展路线,并挑选出过去75年来发表的不同物理系统中内部动力学的一系列例子。例子包括固体中粒子的运动,磁共振成像(MRI),围绕相变的关键现象,生物分子的功能以及最近在自旋电子学和量子计算中的应用。其他基于自旋的光谱学遵循核磁共振的轨迹,使用电子自旋(在电子自旋共振ESR中,也称为电子顺磁共振EPR和铁磁共振,FMR),激发态(通过观察伽马射线角相关的扰动,PAC)和后来的介子自旋(介子自旋弛豫,MuSR),从中选择其他例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal H
The European Physical Journal H HISTORY & PHILOSOPHY OF SCIENCE-PHYSICS, MULTIDISCIPLINARY
CiteScore
1.60
自引率
10.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works. The scope explicitly includes: - Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics. - Annotated and/or contextual translations of relevant foreign-language texts. - Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.
期刊最新文献
Equilibria and the protomodel of the Sun’s atmosphere by Karl Schwarzschild in hindsight A commented translation of Boltzmann’s work, “Ueber die sogenannte H-Curve.” Bohr and von Neumann on the universality of quantum mechanics: materials for the history of the quantum measurement process From history of physics to “history for physics” The drama of ideas in the history of quantum gravity: Niels Bohr, Lev Landau, and Matvei Bronstein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1