Synthesis and Analysis of Well-Defined Copolymers via by Combination ROP Technique

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Macromolecular Reaction Engineering Pub Date : 2023-08-07 DOI:10.1002/mren.202300036
Umit Yildiko, Aslihan Aycan Tanriverdi, Ahmet Cagri Ata, Ismail Cakmak, Ahmet Turan Tekes
{"title":"Synthesis and Analysis of Well-Defined Copolymers via by Combination ROP Technique","authors":"Umit Yildiko,&nbsp;Aslihan Aycan Tanriverdi,&nbsp;Ahmet Cagri Ata,&nbsp;Ismail Cakmak,&nbsp;Ahmet Turan Tekes","doi":"10.1002/mren.202300036","DOIUrl":null,"url":null,"abstract":"<p>Herein, the poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) macro xanthate reversible addition–fragmentation chain-transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol<sup>−1</sup>) block, after the addition of ɛ-caprolactone via ring-opening polymerization. Then, poly (styrene-b-ɛ-caprolactone-b-PEG-b-ɛ-caprolactone-b-styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain-transfer (RAFT) solution polymerization technique via mediated PCL-PEG-PCL xanthate macro-RAFT agents and 2,2′-azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT-IR), proton nuclear magnetic resonance (<sup>1</sup>H-NMR), carbon nuclear magnetic resonance (<sup>13</sup>C-NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First-order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights (<i>M</i><sub>W</sub>) between 16 000 and 36 000 g mol<sup>−1</sup>. The narrow dispersity (<i>Đ</i> = 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be <i>k</i><sub>1</sub> = 6.16 × 10<sup>−4</sup>s<sup>−1</sup>, <i>k</i><sub>2</sub> = 6.91 × 10<sup>−4</sup> s<sup>−1</sup> and <i>k</i><sub>3</sub> = 7.33 × 10<sup>−4</sup> s<sup>−1</sup>. Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) macro xanthate reversible addition–fragmentation chain-transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol−1) block, after the addition of ɛ-caprolactone via ring-opening polymerization. Then, poly (styrene-b-ɛ-caprolactone-b-PEG-b-ɛ-caprolactone-b-styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain-transfer (RAFT) solution polymerization technique via mediated PCL-PEG-PCL xanthate macro-RAFT agents and 2,2′-azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT-IR), proton nuclear magnetic resonance (1H-NMR), carbon nuclear magnetic resonance (13C-NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First-order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights (MW) between 16 000 and 36 000 g mol−1. The narrow dispersity (Đ = 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be k1 = 6.16 × 10−4s−1, k2 = 6.91 × 10−4 s−1 and k3 = 7.33 × 10−4 s−1. Thermal and spectroscopic analyses prove that the reactions are carried out successfully.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合ROP技术合成和分析精细共聚物
在本文中,通过开环聚合添加己内酯后,在聚乙二醇(600、1000和1500 g/mol)嵌段上获得了PCL-PEG-PCL大黄原酸酯可逆加成-断裂链转移剂。然后,以2,2′-偶氮二异丁腈为引发剂,通过PCL‐PEG‐PCL黄原酸酯大分子RAFT介导的溶液聚合技术,合成了聚(苯乙烯‐b‐ԑ‐己内酯‐b‐PEG‐b‐苯乙烯)五嵌段共聚物。使用傅里叶变换红外分光光度计(FT-IR)、质子核磁共振(1H-NMR)、碳核磁共振(13C-NMR)、差示扫描量热法(DSC)和凝胶渗透色谱(GPC)分析对产物进行了验证。随着分子量(MW)在16000至36000 g/mol之间的增加,观察到反应机理的一阶线性动力学图。通过RAFT聚合控制的苯乙烯(St)的窄分散性(Der=1.40–1.48)聚合物形成证实了分子量随着聚合时间的增加而增加。反应动力学为一级反应,速率常数为k1=6.16×10−4s−1,k2=6.91×10−4s−1和k3=7.33×10−4 s−1。热分析和光谱分析证明了反应的成功进行。这篇文章受版权保护。保留所有权利
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
期刊最新文献
Front Cover: Macromol. React. Eng. 6/2024 Masthead: Macromol. React. Eng. 6/2024 Front Cover: Macromol. React. Eng. 5/2024 Masthead: Macromol. React. Eng. 5/2024 Poly(butylene succinate) Microparticles Prepared Through Green Suspension Polycondensations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1