Experimental investigation on reduction of broaching forces by active external vibrations

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2021-05-04 DOI:10.1080/10910344.2021.1903921
Shen-Shun Ying, Shunqi Zhang, Lvgao Lin, Yangyu Wang, R. Schmidt
{"title":"Experimental investigation on reduction of broaching forces by active external vibrations","authors":"Shen-Shun Ying, Shunqi Zhang, Lvgao Lin, Yangyu Wang, R. Schmidt","doi":"10.1080/10910344.2021.1903921","DOIUrl":null,"url":null,"abstract":"Abstract Broaching is very efficient for machining complex-shaped slots in turbine disks made of high thermal resistant super-alloys. However, large cutting forces and high thermal flux lead to high tool wear. To reduce the broaching forces, this paper proposes a vibration assisted broaching system, including the main components of a hydraulic horizontal internal broaching machine, an electrohydraulic vibration exciter, a 2-dimensional valve and a control unit. A force measuring structure and vibration signal acquisition module are designed and integrated into the system. By changing the frequency of the active vibration, cutting forces are obtained and analyzed by fast Fourier transformation method. The experimental results show that through the additional imposed vibration, static and dynamic broaching forces are significantly reduced.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"25 1","pages":"438 - 454"},"PeriodicalIF":2.7000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10910344.2021.1903921","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1903921","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Broaching is very efficient for machining complex-shaped slots in turbine disks made of high thermal resistant super-alloys. However, large cutting forces and high thermal flux lead to high tool wear. To reduce the broaching forces, this paper proposes a vibration assisted broaching system, including the main components of a hydraulic horizontal internal broaching machine, an electrohydraulic vibration exciter, a 2-dimensional valve and a control unit. A force measuring structure and vibration signal acquisition module are designed and integrated into the system. By changing the frequency of the active vibration, cutting forces are obtained and analyzed by fast Fourier transformation method. The experimental results show that through the additional imposed vibration, static and dynamic broaching forces are significantly reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动外部振动降低拉削力的实验研究
摘要拉削是加工高耐热超级合金涡轮盘复杂形状槽的有效方法。然而,较大的切削力和较高的热通量会导致较高的刀具磨损。为了减小拉削力,本文提出了一种振动辅助拉削系统,该系统包括液压卧式内拉床的主要部件、电液激振器、二维阀和控制单元。设计了测力结构和振动信号采集模块,并将其集成到系统中。通过改变主动振动的频率,获得切削力,并用快速傅立叶变换方法进行分析。实验结果表明,通过外加振动,可以显著降低静态和动态拉削力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Numerical modeling of heat flux in ultrasonic-assisted grinding of difficult-to-cut materials with a pressurized lubrication system The performance of grooved turning tools under distinct cooling environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1