Low-rank tensor methods for partial differential equations

IF 16.3 1区 数学 Q1 MATHEMATICS Acta Numerica Pub Date : 2023-05-01 DOI:10.1017/S0962492922000125
M. Bachmayr
{"title":"Low-rank tensor methods for partial differential equations","authors":"M. Bachmayr","doi":"10.1017/S0962492922000125","DOIUrl":null,"url":null,"abstract":"Low-rank tensor representations can provide highly compressed approximations of functions. These concepts, which essentially amount to generalizations of classical techniques of separation of variables, have proved to be particularly fruitful for functions of many variables. We focus here on problems where the target function is given only implicitly as the solution of a partial differential equation. A first natural question is under which conditions we should expect such solutions to be efficiently approximated in low-rank form. Due to the highly nonlinear nature of the resulting low-rank approximations, a crucial second question is at what expense such approximations can be computed in practice. This article surveys basic construction principles of numerical methods based on low-rank representations as well as the analysis of their convergence and computational complexity.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"32 1","pages":"1 - 121"},"PeriodicalIF":16.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492922000125","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Low-rank tensor representations can provide highly compressed approximations of functions. These concepts, which essentially amount to generalizations of classical techniques of separation of variables, have proved to be particularly fruitful for functions of many variables. We focus here on problems where the target function is given only implicitly as the solution of a partial differential equation. A first natural question is under which conditions we should expect such solutions to be efficiently approximated in low-rank form. Due to the highly nonlinear nature of the resulting low-rank approximations, a crucial second question is at what expense such approximations can be computed in practice. This article surveys basic construction principles of numerical methods based on low-rank representations as well as the analysis of their convergence and computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偏微分方程的低阶张量方法
低秩张量表示可以提供函数的高度压缩近似。这些概念本质上相当于经典变量分离技术的推广,已被证明对许多变量的函数特别有成效。我们在这里关注的问题是,目标函数只是作为偏微分方程的解隐式给出的。第一个自然问题是,在什么条件下,我们应该期望以低秩形式有效地近似这些解。由于由此产生的低秩近似具有高度非线性的性质,关键的第二个问题是在实践中可以以何种代价计算这些近似。本文综述了基于低秩表示的数值方法的基本构造原理,并分析了它们的收敛性和计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
期刊最新文献
The virtual element method Floating-point arithmetic Overcoming the timescale barrier in molecular dynamics: Transfer operators, variational principles and machine learning ANU volume 32 Cover and Back matter ANU volume 32 Cover and Front matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1