An in vitro evaluation on polyurethane foam sheets of the insertion torque, removal torque values, and resonance frequency analysis (RFA) of a self-tapping threads and round apex implant

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Cellular Polymers Pub Date : 2020-11-25 DOI:10.1177/0262489320971796
M. Tumedei, A. Piattelli, A. Falco, F. de Angelis, F. Lorusso, M. Di Carmine, G. Iezzi
{"title":"An in vitro evaluation on polyurethane foam sheets of the insertion torque, removal torque values, and resonance frequency analysis (RFA) of a self-tapping threads and round apex implant","authors":"M. Tumedei, A. Piattelli, A. Falco, F. de Angelis, F. Lorusso, M. Di Carmine, G. Iezzi","doi":"10.1177/0262489320971796","DOIUrl":null,"url":null,"abstract":"The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320971796","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489320971796","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氨酯泡沫片对自攻螺纹和圆顶端植入物插入扭矩、移除扭矩值和共振频率分析(RFA)的体外评估
牙种植体的初始稳定性和微运动缺失是牙种植体骨整合的关键因素。本体外研究的目的是模拟不同聚氨酯密度下的骨反应——自攻螺纹和圆形种植体几何形状的影响。按照校准的钻孔方案,在D1、D2、D3和D4聚氨酯块密度中总共放置了40个植入物。计算了插入、移除扭矩和共振频率分析(RFA)的平均值。所有实验条件显示插入扭矩值>30Ncm。在D1聚氨酯中存在显著更高的插入扭矩、移除和RFA。D3和D4也有类似的证据。本研究的有效性表明,使用自攻螺纹和圆形顶点植入物具有宝贵的临床优势,例如在上颌骨后部骨密度降低的情况下
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
期刊最新文献
The impact performance of density-graded polyurea elastomeric foams CONFERENCES AND SEMINARS ISOPA’s New Role PATENTS ABSTRACTS Experiments and Modelling of the Expansion of Crosslinked Polyethylene Foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1