Non-reactive facet specific adsorption as a route to remediation of chlorinated organic contaminants

Hao Guo, Emily A. Gerstein, Kshitij C. Jha, Iskinder Arsano, M. Haider, T. Khan, M. Tsige
{"title":"Non-reactive facet specific adsorption as a route to remediation of chlorinated organic contaminants","authors":"Hao Guo, Emily A. Gerstein, Kshitij C. Jha, Iskinder Arsano, M. Haider, T. Khan, M. Tsige","doi":"10.3389/fctls.2023.1116867","DOIUrl":null,"url":null,"abstract":"The present work quantifies metal-contaminant interactions between palladium substrates and three salient chlorinated organic contaminants, namely trichloroethylene 1,3,5-trichlorobenzene (TCB), and 3,3′,4,4′-tetrachlorobiphenyl (PCB77). Given that Pd is one of the conventional catalytically active materials known for contaminant removal, maximizing catalytic efficiency through optimal adsorption dynamics reduces the cost of remediation of contaminants that are persistent water pollutants chronically affecting public health. Adsorption efficiency analyses from all-atom molecular dynamics (MD) simulations advance the understanding of reaction mechanisms available from density functional theory (DFT) calculations to an extractable feature scale that can fit the parametric design of supported metal catalytic systems and feed into high throughput catalyst selection. Data on residence time, site-specific adsorption, binding energies, packing geometries, orientation profiles, and the effect of adsorbate size show the anomalous behaviour of organic contaminant adsorption on the undercoordinated {110} surface as compared to the {111} and {100} surfaces. The intermolecular interaction within contaminants from molecular dynamics simulation exhibits refreshing results than ordinary single molecule density functional theory calculation. Since complete adsorption and dechlorination is an essential step for chlorinated organic contaminant remediation pathways, the presented profiles provide essential information for designing efficient remediation systems through facet-controlled palladium nanoparticles. Graphical Abstract","PeriodicalId":73071,"journal":{"name":"Frontiers in catalysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fctls.2023.1116867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work quantifies metal-contaminant interactions between palladium substrates and three salient chlorinated organic contaminants, namely trichloroethylene 1,3,5-trichlorobenzene (TCB), and 3,3′,4,4′-tetrachlorobiphenyl (PCB77). Given that Pd is one of the conventional catalytically active materials known for contaminant removal, maximizing catalytic efficiency through optimal adsorption dynamics reduces the cost of remediation of contaminants that are persistent water pollutants chronically affecting public health. Adsorption efficiency analyses from all-atom molecular dynamics (MD) simulations advance the understanding of reaction mechanisms available from density functional theory (DFT) calculations to an extractable feature scale that can fit the parametric design of supported metal catalytic systems and feed into high throughput catalyst selection. Data on residence time, site-specific adsorption, binding energies, packing geometries, orientation profiles, and the effect of adsorbate size show the anomalous behaviour of organic contaminant adsorption on the undercoordinated {110} surface as compared to the {111} and {100} surfaces. The intermolecular interaction within contaminants from molecular dynamics simulation exhibits refreshing results than ordinary single molecule density functional theory calculation. Since complete adsorption and dechlorination is an essential step for chlorinated organic contaminant remediation pathways, the presented profiles provide essential information for designing efficient remediation systems through facet-controlled palladium nanoparticles. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非反应性小面特异性吸附作为氯化有机污染物修复途径
本工作量化了钯基质与三种显著的氯化有机污染物,即三氯乙烯1,3,5-三氯苯(TCB)和3,3′,4,4′-四氯联苯(PCB77)之间的金属污染物相互作用。考虑到Pd是已知的用于去除污染物的传统催化活性材料之一,通过最佳吸附动力学最大化催化效率降低了修复污染物的成本,这些污染物是长期影响公众健康的持久性水污染物。全原子分子动力学(MD)模拟的吸附效率分析将对反应机理的理解从密度泛函理论(DFT)计算推进到可提取的特征尺度,该特征尺度可以适合负载金属催化系统的参数设计,并可用于高通量催化剂的选择。与{111}和{100}表面相比,关于停留时间、位点特异性吸附、结合能、堆积几何形状、取向轮廓和吸附质大小的影响的数据显示了有机污染物在欠配位{110}表面上吸附的异常行为。分子动力学模拟中污染物内部的分子间相互作用显示出比普通单分子密度泛函理论计算更令人耳目一新的结果。由于完全吸附和脱氯是氯化有机污染物修复途径的重要步骤,所提出的概况为设计通过面控钯纳米颗粒的有效修复系统提供了重要信息。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined anodic and cathodic peroxide production in an undivided carbonate/bicarbonate electrolyte with 144% combined current efficiency Novel concepts for the biocatalytic synthesis of second-generation biodiesel Parallel paired electrolysis of green oxidizing agents by the combination of a gas diffusion cathode and boron-doped diamond anode Parallel paired electrolysis of green oxidizing agents by the combination of a gas diffusion cathode and boron-doped diamond anode Biocatalytic route scouting and enzyme screening toward the synthesis of α-benzyl L-glutamate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1