3D hydrostratigraphic and hydraulic conductivity modelling using supervised machine learning

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-09-01 DOI:10.1016/j.acags.2023.100122
Tewodros Tilahun , Jesse Korus
{"title":"3D hydrostratigraphic and hydraulic conductivity modelling using supervised machine learning","authors":"Tewodros Tilahun ,&nbsp;Jesse Korus","doi":"10.1016/j.acags.2023.100122","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately modeling highly heterogenous aquifers is one of the big challenges in hydrogeology. There is a pressing need to develop new methods that transform high-resolution data into hydrogeological parameters representative of such aquifers. We use random forest-based machine learning to predict the distribution of hydrostratigraphic units and hydraulic conductivity (K) at a regional scale. We used lithologic logs from &gt;2000 boreholes and resistivity-depth models from 2717 km of Airborne Electromagnetics (AEM). Eighty unique lithologic categories are lumped into 5 hydrostratigraphic units. K data is derived from descriptions of grain size and texture. The input data are resampled into a 200 × 200 × 1m grid and split into 70% training and 30% validation. K prediction had a training F1 score of 95% and 87% testing accuracy. After hyperparameter tuning these scores improved to 99.6% and 92%, respectively. Hydrostratigraphic unit prediction showed a training F1 score of 97% and 91% testing accuracy, improving to 100% and 95% after hyperparameter tuning. This method produces a high-resolution 3D model of K and hydrostratigraphic units that fills gaps between widely spaced boreholes. It is applicable in any setting where boreholes and AEM are available and can be used to build robust groundwater models for heterogeneous aquifers.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"19 ","pages":"Article 100122"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Accurately modeling highly heterogenous aquifers is one of the big challenges in hydrogeology. There is a pressing need to develop new methods that transform high-resolution data into hydrogeological parameters representative of such aquifers. We use random forest-based machine learning to predict the distribution of hydrostratigraphic units and hydraulic conductivity (K) at a regional scale. We used lithologic logs from >2000 boreholes and resistivity-depth models from 2717 km of Airborne Electromagnetics (AEM). Eighty unique lithologic categories are lumped into 5 hydrostratigraphic units. K data is derived from descriptions of grain size and texture. The input data are resampled into a 200 × 200 × 1m grid and split into 70% training and 30% validation. K prediction had a training F1 score of 95% and 87% testing accuracy. After hyperparameter tuning these scores improved to 99.6% and 92%, respectively. Hydrostratigraphic unit prediction showed a training F1 score of 97% and 91% testing accuracy, improving to 100% and 95% after hyperparameter tuning. This method produces a high-resolution 3D model of K and hydrostratigraphic units that fills gaps between widely spaced boreholes. It is applicable in any setting where boreholes and AEM are available and can be used to build robust groundwater models for heterogeneous aquifers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用监督机器学习的三维水文地层和导水率建模
准确模拟高非均质含水层是水文地质学的一大挑战。迫切需要开发新的方法,将高分辨率数据转换为代表这些含水层的水文地质参数。我们使用基于随机森林的机器学习来预测区域尺度上的水文地层单元和水力电导率(K)的分布。我们使用了2000个钻孔的岩性测井和2717公里机载电磁(AEM)的电阻率深度模型。80个独特的岩性类别被归为5个水文地层单位。K数据来源于对晶粒尺寸和纹理的描述。输入数据重新采样到一个200 × 200 × 1m的网格中,分成70%的训练和30%的验证。K预测的训练F1得分为95%,测试准确率为87%。经过超参数调优后,这些分数分别提高到99.6%和92%。水文地层单元预测的训练F1得分为97%,测试准确率为91%,超参数调优后分别提高到100%和95%。这种方法可以生成高分辨率的K和水文地层单元3D模型,填补大间距钻孔之间的空隙。它适用于任何有钻孔和AEM的环境,可用于建立非均质含水层的稳健地下水模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1