Online Web query system for various frequency distributions of bus passengers in Taichung city of Taiwan

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Smart Cities Pub Date : 2020-09-04 DOI:10.1049/iet-smc.2020.0017
Jing-Doo Wang, Shin-Hung Pan, Cheng-Yuan Ho, Yao-Nan Lien, Shu-chuan Liao, Achmad Nurmandi
{"title":"Online Web query system for various frequency distributions of bus passengers in Taichung city of Taiwan","authors":"Jing-Doo Wang,&nbsp;Shin-Hung Pan,&nbsp;Cheng-Yuan Ho,&nbsp;Yao-Nan Lien,&nbsp;Shu-chuan Liao,&nbsp;Achmad Nurmandi","doi":"10.1049/iet-smc.2020.0017","DOIUrl":null,"url":null,"abstract":"<div>\n <p>It is highly desirable that traffic controllers or city residents can discern regular patterns and promptly detect irregularities or abnormal events in a public transportation system. This study proposes a web-based information system that allows users to study the travel behaviour of bus passengers from various perspectives. The system uses data from the comprehensive set of Taichung City Bus Riding Records between 2015 and 2016. However, it can provide the same functionality to any other similar bus transportation system by using the appropriate data. It should be emphasised that the system can provide the frequency distributions not only of passenger trips between two stops but also of the passenger volume for a given segment of any route. Owing to the increased computational and storage-capacity requirements of the proposed system, the scalable Hadoop MapReduce programming model was used. Furthermore, bus companies can use the system to design better service plans, such as more flexible bus schedules and more convenient routes, to meet passenger demand as well as reduce operation cost and energy consumption. The authors believe that the proposed system can make a valuable contribution to public welfare.</p>\n </div>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":"2 3","pages":"135-145"},"PeriodicalIF":2.1000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-smc.2020.0017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-smc.2020.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

It is highly desirable that traffic controllers or city residents can discern regular patterns and promptly detect irregularities or abnormal events in a public transportation system. This study proposes a web-based information system that allows users to study the travel behaviour of bus passengers from various perspectives. The system uses data from the comprehensive set of Taichung City Bus Riding Records between 2015 and 2016. However, it can provide the same functionality to any other similar bus transportation system by using the appropriate data. It should be emphasised that the system can provide the frequency distributions not only of passenger trips between two stops but also of the passenger volume for a given segment of any route. Owing to the increased computational and storage-capacity requirements of the proposed system, the scalable Hadoop MapReduce programming model was used. Furthermore, bus companies can use the system to design better service plans, such as more flexible bus schedules and more convenient routes, to meet passenger demand as well as reduce operation cost and energy consumption. The authors believe that the proposed system can make a valuable contribution to public welfare.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
台湾台中市巴士乘客各种频率分布的在线Web查询系统
在公共交通系统中,交通管理人员或城市居民能够识别规律,并及时发现不正常或异常事件是非常值得期待的。本研究提出一个基于网络的资讯系统,让使用者可以从不同角度研究巴士乘客的出行行为。该系统使用了2015年至2016年台中市公交乘车记录的综合数据。但是,通过使用适当的数据,它可以为任何其他类似的总线运输系统提供相同的功能。应该强调的是,该系统不仅可以提供两站之间的乘客行程的频率分布,而且还可以提供任何路线的给定路段的乘客数量。由于所提出的系统对计算和存储容量的要求增加,因此使用了可扩展的Hadoop MapReduce编程模型。此外,巴士公司可以利用该系统设计更好的服务计划,例如更灵活的巴士时间表和更方便的路线,以满足乘客需求,同时降低运营成本和能源消耗。笔者认为,该制度可以为社会公益事业做出有价值的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
期刊最新文献
Guest Editorial: Smart cities 2.0: How Artificial Intelligence and Internet of Things are transforming urban living Smart city fire surveillance: A deep state-space model with intelligent agents Securing smart cities through machine learning: A honeypot-driven approach to attack detection in Internet of Things ecosystems Smart resilience through IoT-enabled natural disaster management: A COVID-19 response in São Paulo state Optimising air quality prediction in smart cities with hybrid particle swarm optimization-long-short term memory-recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1