{"title":"CHL Calabi–Yau threefolds: curve counting, Mathieu moonshine and Siegel modular forms","authors":"J. Bryan, G. Oberdieck","doi":"10.4310/cntp.2020.v14.n4.a3","DOIUrl":null,"url":null,"abstract":"A CHL model is the quotient of $\\mathrm{K3} \\times E$ by an order $N$ automorphism which acts symplectically on the K3 surface and acts by shifting by an $N$-torsion point on the elliptic curve $E$. We conjecture that the primitive Donaldson-Thomas partition function of elliptic CHL models is a Siegel modular form, namely the Borcherds lift of the corresponding twisted-twined elliptic genera which appear in Mathieu moonshine. The conjecture matches predictions of string theory by David, Jatkar and Sen. We use the topological vertex to prove several base cases of the conjecture. Via a degeneration to $\\mathrm{K3} \\times \\mathbb{P}^1$ we also express the DT partition functions as a twisted trace of an operator on Fock space. This yields further computational evidence. An extension of the conjecture to non-geometric CHL models is discussed. \nWe consider CHL models of order $N=2$ in detail. We conjecture a formula for the Donaldson-Thomas invariants of all order two CHL models in all curve classes. The conjecture is formulated in terms of two Siegel modular forms. One of them, a Siegel form for the Iwahori subgroup, has to our knowledge not yet appeared in physics. This discrepancy is discussed in an appendix with Sheldon Katz.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n4.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
A CHL model is the quotient of $\mathrm{K3} \times E$ by an order $N$ automorphism which acts symplectically on the K3 surface and acts by shifting by an $N$-torsion point on the elliptic curve $E$. We conjecture that the primitive Donaldson-Thomas partition function of elliptic CHL models is a Siegel modular form, namely the Borcherds lift of the corresponding twisted-twined elliptic genera which appear in Mathieu moonshine. The conjecture matches predictions of string theory by David, Jatkar and Sen. We use the topological vertex to prove several base cases of the conjecture. Via a degeneration to $\mathrm{K3} \times \mathbb{P}^1$ we also express the DT partition functions as a twisted trace of an operator on Fock space. This yields further computational evidence. An extension of the conjecture to non-geometric CHL models is discussed.
We consider CHL models of order $N=2$ in detail. We conjecture a formula for the Donaldson-Thomas invariants of all order two CHL models in all curve classes. The conjecture is formulated in terms of two Siegel modular forms. One of them, a Siegel form for the Iwahori subgroup, has to our knowledge not yet appeared in physics. This discrepancy is discussed in an appendix with Sheldon Katz.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.