Carbon-Carbon Bond Cleavage Catalyzed by Human Cytochrome P450 Enzymes: a-Ketol as the Key Intermediate Metabolite in Sequential Metabolism of Olanexidine.
Yiding Hu, Yi Xiao, Z. Rao, Vasant Kumar, Hanlan Liu, Chuang Lu
{"title":"Carbon-Carbon Bond Cleavage Catalyzed by Human Cytochrome P450 Enzymes: a-Ketol as the Key Intermediate Metabolite in Sequential Metabolism of Olanexidine.","authors":"Yiding Hu, Yi Xiao, Z. Rao, Vasant Kumar, Hanlan Liu, Chuang Lu","doi":"10.2174/1872312813666191125095818","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nCarbon-carbon bond cleavage of a saturated aliphatic moiety is rarely seen in xenobiotic metabolism. Olanexidine (Olanedine®), containing an n-octyl (C8) side chain, was mainly metabolized to various shortened side chain (C4 to C6) acid-containing metabolites in vivo in preclinical species. In liver microsomes and S9, the major metabolites of olanexidine were from multi-oxidation on its n-octyl (C8) side chain. However, the carbon-carbon bond cleavage mechanism of n-octyl (C8) side chain, and enzyme(s) responsible for its metabolism in human remained unknown.\n\n\nMETHODS\nA pair of regioisomers of α-ketol-containing C8 side chain olanexidine analogs (3,2-ketol olanexidine and 2,3-ketol olanexidine) were synthesized, followed by incubation in human liver microsomes, recombinant human cytochrome P450 enzymes or human hepatocytes, and subsequent metabolite identification using LC/UV/MS.\n\n\nRESULTS\nMultiple shortened side chain (C4 to C6) metabolites were identified, including C4, C5 and C6-acid and C6-hydroxyl metabolites. Among 19 cytochrome P450 enzymes tested, CYP2D6, CYP3A4 and CYP3A5 were identified to catalyze carbon-carbon bond cleavage.\n\n\nCONCLUSIONS\n3,2-ketol olanexidine and 2,3-ketol olanexidine were confirmed as the key intermediates in carbon-carbon bond cleavage. Its mechanism is proposed that a nucleophilic addition of iron-peroxo species, generated by CYP2D6 and CYP3A4/5, to the carbonyl group caused the carbon-carbon bond cleavage between the adjacent hydroxyl and ketone groups. As results, 2,3-ketol olanexidine formed a C6 side chain acid metabolite. While, 3,2-ketol olanexidine formed a C6 side chain aldehyde intermediate, which was either oxidized to a C6 side chain acid metabolite or reduced to a C6 side chain hydroxyl metabolite.","PeriodicalId":11339,"journal":{"name":"Drug metabolism letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1872312813666191125095818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
BACKGROUND
Carbon-carbon bond cleavage of a saturated aliphatic moiety is rarely seen in xenobiotic metabolism. Olanexidine (Olanedine®), containing an n-octyl (C8) side chain, was mainly metabolized to various shortened side chain (C4 to C6) acid-containing metabolites in vivo in preclinical species. In liver microsomes and S9, the major metabolites of olanexidine were from multi-oxidation on its n-octyl (C8) side chain. However, the carbon-carbon bond cleavage mechanism of n-octyl (C8) side chain, and enzyme(s) responsible for its metabolism in human remained unknown.
METHODS
A pair of regioisomers of α-ketol-containing C8 side chain olanexidine analogs (3,2-ketol olanexidine and 2,3-ketol olanexidine) were synthesized, followed by incubation in human liver microsomes, recombinant human cytochrome P450 enzymes or human hepatocytes, and subsequent metabolite identification using LC/UV/MS.
RESULTS
Multiple shortened side chain (C4 to C6) metabolites were identified, including C4, C5 and C6-acid and C6-hydroxyl metabolites. Among 19 cytochrome P450 enzymes tested, CYP2D6, CYP3A4 and CYP3A5 were identified to catalyze carbon-carbon bond cleavage.
CONCLUSIONS
3,2-ketol olanexidine and 2,3-ketol olanexidine were confirmed as the key intermediates in carbon-carbon bond cleavage. Its mechanism is proposed that a nucleophilic addition of iron-peroxo species, generated by CYP2D6 and CYP3A4/5, to the carbonyl group caused the carbon-carbon bond cleavage between the adjacent hydroxyl and ketone groups. As results, 2,3-ketol olanexidine formed a C6 side chain acid metabolite. While, 3,2-ketol olanexidine formed a C6 side chain aldehyde intermediate, which was either oxidized to a C6 side chain acid metabolite or reduced to a C6 side chain hydroxyl metabolite.
期刊介绍:
Drug Metabolism Letters publishes letters and research articles on major advances in all areas of drug metabolism and disposition. The emphasis is on publishing quality papers very rapidly by taking full advantage of the Internet technology both for the submission and review of manuscripts. The journal covers the following areas: In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites.