Modelling the interdependent relationships among epidemic antecedents using fuzzy multiple attribute decision making (F-MADM) approaches

IF 1.1 Q3 COMPUTER SCIENCE, THEORY & METHODS Open Computer Science Pub Date : 2021-01-01 DOI:10.1515/comp-2020-0213
Dharyll Prince M. Abellana
{"title":"Modelling the interdependent relationships among epidemic antecedents using fuzzy multiple attribute decision making (F-MADM) approaches","authors":"Dharyll Prince M. Abellana","doi":"10.1515/comp-2020-0213","DOIUrl":null,"url":null,"abstract":"Abstract With the high incidence of the dengue epidemic in developing countries, it is crucial to understand its dynamics from a holistic perspective. This paper analyzes different types of antecedents from a cybernetics perspective using a structural modelling approach. The novelty of this paper is twofold. First, it analyzes antecedents that may be social, institutional, environmental, or economic in nature. Since this type of study has not been done in the context of the dengue epidemic modelling, this paper offers a fresh perspective on this topic. Second, the paper pioneers the use of fuzzy multiple attribute decision making (F-MADM) approaches for the modelling of epidemic antecedents. As such, the paper has provided an avenue for the cross-fertilization of knowledge between scholars working in soft computing and epidemiological modelling domains.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"11 1","pages":"305 - 329"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2020-0213","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract With the high incidence of the dengue epidemic in developing countries, it is crucial to understand its dynamics from a holistic perspective. This paper analyzes different types of antecedents from a cybernetics perspective using a structural modelling approach. The novelty of this paper is twofold. First, it analyzes antecedents that may be social, institutional, environmental, or economic in nature. Since this type of study has not been done in the context of the dengue epidemic modelling, this paper offers a fresh perspective on this topic. Second, the paper pioneers the use of fuzzy multiple attribute decision making (F-MADM) approaches for the modelling of epidemic antecedents. As such, the paper has provided an avenue for the cross-fertilization of knowledge between scholars working in soft computing and epidemiological modelling domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用模糊多属性决策方法(F-MADM)建模流行病前因之间的相互依赖关系
摘要鉴于登革热疫情在发展中国家高发,从整体角度了解其动态至关重要。本文采用结构建模方法,从控制论的角度分析了不同类型的前因。这篇论文的新颖性是双重的。首先,它分析了可能是社会、制度、环境或经济性质的前因。由于这类研究尚未在登革热疫情建模的背景下进行,本文为这一主题提供了一个新的视角。其次,本文率先使用模糊多属性决策(F-MADM)方法对流行病前因进行建模。因此,该论文为软计算和流行病学建模领域的学者之间的知识交叉交流提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Computer Science
Open Computer Science COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
25 weeks
期刊最新文献
Artificial intelligence-based public safety data resource management in smart cities Application of fingerprint image fuzzy edge recognition algorithm in criminal technology Application of SSD network algorithm in panoramic video image vehicle detection system Data preprocessing impact on machine learning algorithm performance RFID supply chain data deconstruction method based on artificial intelligence technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1