Fuyang Ke, Xiangxiang Hu, Guan Hong, Lulu Ming, Bao Song
{"title":"Characteristics and Evolution of the Response of the Lower Atmosphere to the Tonga Volcanic Eruption","authors":"Fuyang Ke, Xiangxiang Hu, Guan Hong, Lulu Ming, Bao Song","doi":"10.3390/app131810095","DOIUrl":null,"url":null,"abstract":"Research concerning the response characteristics of lower atmosphere to volcanic eruption is a key and hot topic in the field of volcanic environment research. Against the background of a submarine volcano in the South Pacific island country of Hunga Tonga–Hunga Ha’apai (HTHH) on 15 January 2022, this paper explores the response characteristics of this volcanic eruption on environmental factors in the lower atmosphere region using a priori data such as ERA5 reanalysis data, water vapor data from GNSS inversion and surface temperature data from Landsat inversion for the Tonga Islands region. Among them, (1) The amount of precipitable water (PWV) in Tonga was abnormally high on 15 January. (2) The water vapor flux was mainly in the lower space below 850 hPa. (3) The average surface temperature in December 2021 was higher. In February 2022, the average surface temperature was lower. (4) There was a low-pressure center near 30° S on the south side of Tonga volcano on 14 January, and a new low-pressure center was formed on the east side of Tonga volcano after the eruption of Tonga volcano on 15 January. Furthermore, the precipitation area of Tonga increased in January and decreased in February 2022. The PWV values, water vapor fluxes, temperature and circulation response characteristics, and precipitation characteristics show that the volcanic eruption affected part of the atmospheric and oceanic circulation, and water vapor was transported to the low-pressure center along the direction of atmospheric circulation. With the continuous water vapor transport, precipitation formed in Tonga, and the intensity and area of precipitation in Tonga increased significantly in January. Thus, the volcanic eruption could have significantly triggered the response between the low-pressure center, PWV, precipitation and surface temperature in the lower atmosphere, which influenced the environmental characteristics of this eruption.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810095","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Research concerning the response characteristics of lower atmosphere to volcanic eruption is a key and hot topic in the field of volcanic environment research. Against the background of a submarine volcano in the South Pacific island country of Hunga Tonga–Hunga Ha’apai (HTHH) on 15 January 2022, this paper explores the response characteristics of this volcanic eruption on environmental factors in the lower atmosphere region using a priori data such as ERA5 reanalysis data, water vapor data from GNSS inversion and surface temperature data from Landsat inversion for the Tonga Islands region. Among them, (1) The amount of precipitable water (PWV) in Tonga was abnormally high on 15 January. (2) The water vapor flux was mainly in the lower space below 850 hPa. (3) The average surface temperature in December 2021 was higher. In February 2022, the average surface temperature was lower. (4) There was a low-pressure center near 30° S on the south side of Tonga volcano on 14 January, and a new low-pressure center was formed on the east side of Tonga volcano after the eruption of Tonga volcano on 15 January. Furthermore, the precipitation area of Tonga increased in January and decreased in February 2022. The PWV values, water vapor fluxes, temperature and circulation response characteristics, and precipitation characteristics show that the volcanic eruption affected part of the atmospheric and oceanic circulation, and water vapor was transported to the low-pressure center along the direction of atmospheric circulation. With the continuous water vapor transport, precipitation formed in Tonga, and the intensity and area of precipitation in Tonga increased significantly in January. Thus, the volcanic eruption could have significantly triggered the response between the low-pressure center, PWV, precipitation and surface temperature in the lower atmosphere, which influenced the environmental characteristics of this eruption.
期刊介绍:
Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.