{"title":"ON SOLVING AN ENHANCED EVASION PROBLEM FOR LINEAR DISCRETE–TIME SYSTEMS","authors":"E. K. Kostousova","doi":"10.15826/umj.2022.1.006","DOIUrl":null,"url":null,"abstract":"We consider the problem of an enhanced evasion for linear discrete-time systems, where there are two conflicting bounded controls and the aim of one of them is to be guaranteed to avoid the trajectory hitting a given target set at a given final time and also at intermediate instants. First we outline a common solution scheme based on the construction of so called solvability tubes or repulsive tubes. Then a much more quick and simple for realization method based on the construction of the tubes with parallelepiped-valued cross-sections is presented under assumptions that the target set is a parallelepiped and parallelotope-valued constraints on controls are imposed. An example illustrating this method is considered.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of an enhanced evasion for linear discrete-time systems, where there are two conflicting bounded controls and the aim of one of them is to be guaranteed to avoid the trajectory hitting a given target set at a given final time and also at intermediate instants. First we outline a common solution scheme based on the construction of so called solvability tubes or repulsive tubes. Then a much more quick and simple for realization method based on the construction of the tubes with parallelepiped-valued cross-sections is presented under assumptions that the target set is a parallelepiped and parallelotope-valued constraints on controls are imposed. An example illustrating this method is considered.