REDUCTION OF DATA LEAKAGE IN DISTRIBUTED CLOUD STORAGE SYSTEMS USING DISTRIBUTED CLOUD GUARD (DCG)

Meesala Sravani, Meesala Krishna Murthy
{"title":"REDUCTION OF DATA LEAKAGE IN DISTRIBUTED CLOUD STORAGE SYSTEMS USING DISTRIBUTED CLOUD GUARD (DCG)","authors":"Meesala Sravani, Meesala Krishna Murthy","doi":"10.21817/indjcse/2023/v14i3/231403014","DOIUrl":null,"url":null,"abstract":"Cloud storage offers security, affordability, and global data access. Cloud storage is scalable, so organizations may simply add or delete storage. Cloud storage is convenient and safe. Dropbox, Google Drive, and Microsoft OneDrive allow cross-device data storage. Cloud storage providers (CSPs) also encrypt data. If data were dispersed across different CSPs, attackers would need to target numerous CSPs to retrieve the whole set. Hence, attackers struggle to obtain all the data. Email, cloud storage, and other methods can readily exchange data chunks without user consent. Data breaches can occur if security is inadequate. Because there are no access controls or insights into the data exchanged across clouds. Cyberattacks might disclose cloud data. Distributed Cloud Guard (DCG), a cloud security system, leverages advanced analytics to detect data flow irregularities like unlawful data exfiltration to solve this problem. We can then take immediate steps to prevent data leakage. Attackers would have to assault numerous clouds to access all semantically homogeneous data in the same cloud. DCG simplifies data leak detection and mitigation by centralizing data. This project uses Min-Hash and Bloom filter techniques to trademark data hunks for secure storage. Clustering lowers data leaks by distributing data hunks among clouds.","PeriodicalId":52250,"journal":{"name":"Indian Journal of Computer Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21817/indjcse/2023/v14i3/231403014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud storage offers security, affordability, and global data access. Cloud storage is scalable, so organizations may simply add or delete storage. Cloud storage is convenient and safe. Dropbox, Google Drive, and Microsoft OneDrive allow cross-device data storage. Cloud storage providers (CSPs) also encrypt data. If data were dispersed across different CSPs, attackers would need to target numerous CSPs to retrieve the whole set. Hence, attackers struggle to obtain all the data. Email, cloud storage, and other methods can readily exchange data chunks without user consent. Data breaches can occur if security is inadequate. Because there are no access controls or insights into the data exchanged across clouds. Cyberattacks might disclose cloud data. Distributed Cloud Guard (DCG), a cloud security system, leverages advanced analytics to detect data flow irregularities like unlawful data exfiltration to solve this problem. We can then take immediate steps to prevent data leakage. Attackers would have to assault numerous clouds to access all semantically homogeneous data in the same cloud. DCG simplifies data leak detection and mitigation by centralizing data. This project uses Min-Hash and Bloom filter techniques to trademark data hunks for secure storage. Clustering lowers data leaks by distributing data hunks among clouds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用分布式云防护(DCG)减少分布式云存储系统中的数据泄漏
云存储提供了安全性、经济性和全球数据访问。云存储是可扩展的,因此组织可以简单地添加或删除存储。云存储既方便又安全。Dropbox、Google Drive和Microsoft OneDrive允许跨设备数据存储。云存储提供商(CSP)也对数据进行加密。如果数据分散在不同的CSP之间,攻击者将需要以多个CSP为目标来检索整个集合。因此,攻击者很难获得所有数据。电子邮件、云存储和其他方法可以在没有用户同意的情况下轻松地交换数据块。如果安全性不足,可能会发生数据泄露。因为对云之间交换的数据没有访问控制或见解。网络攻击可能会泄露云数据。分布式云卫士(DCG)是一种云安全系统,它利用高级分析来检测数据流的不规则性,如非法数据泄露,以解决这个问题。然后我们可以立即采取措施防止数据泄露。攻击者必须攻击多个云才能访问同一云中所有语义相同的数据。DCG通过集中数据简化了数据泄漏检测和缓解。该项目使用Min-Hash和Bloom过滤技术为安全存储的数据块注册商标。集群通过在云中分布数据块来降低数据泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indian Journal of Computer Science and Engineering
Indian Journal of Computer Science and Engineering Engineering-Engineering (miscellaneous)
自引率
0.00%
发文量
146
期刊最新文献
FEATURE SELECTION AND CLASSIFICATION FOR MICROARRAY DATA USING UPGRADE CHI-SQUARE TEST ENHANCING PERFORMANCE OF TRAFFIC CLASSIFICATION WITH FEATURE SELECTION METHODS MACHINE LEARNING MODELS FOR HEART DISEASE PREDICTION-A REVIEW A DEEP LEARNING MODEL IMPLEMENTATION OF TABNET FOR PREDICTING PEPTIDE-PROTEIN INTERACTION IN CANCER EXPLORING MALARIA DISEASE BIOMARKERS: AN INTEGRATED APPROACH USING NETWORK TOPOLOGY AND ENRICHMENT ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1