Effects of maize and soybean intercropping on nodule growth, nitrogen fixation of soybean under low phosphorus condition

X. Qin, Haodong Pan, Jingxiu Xiao, Li Tang, Yi Zheng
{"title":"Effects of maize and soybean intercropping on nodule growth, nitrogen fixation of soybean under low phosphorus condition","authors":"X. Qin, Haodong Pan, Jingxiu Xiao, Li Tang, Yi Zheng","doi":"10.3724/sp.j.1006.2021.04237","DOIUrl":null,"url":null,"abstract":": To investigate the effects of maize and soybean intercropping on nitrogen and phosphorus uptake, nodule growth, and nitrogen fixation in soybean, a pot experiment was conducted with two phosphorus (P) rates (low P -P50 and sufficient P -P100). The results showed that, compared with monocropped soybean, intercropping of soybean and maize significantly increased the nodule number, nodule weight, leghemoglobin content, and nitrogenase activity of nodule, and promoted the growth and nitrogen (N) and phosphorus uptake of soybean under P50 and P100 rates. The concentrations of N, P, and the activities of acid phosphatase, phytase in nodules in intercropped soybean were significantly higher than those of monocropped soybean under P50 and P100 rates, and the activities of acid phosphatase and phytase showed the highest values under IS-P50 treatment. In addition, the P concentration in the nodules of intercropped soybean under P50 rate was significantly higher than that of monocropped soybean under P90 rate. so In summary, to maintain the larger phosphorus content for nitrogen fixation of soybean under phosphorus deficiency, the soybean and maize intercropping system increased the phosphorus concentration in the nodules mainly by enhancing the activities of acid phosphatase and phytase in the nodules, and thus promoted the growth and nitrogen uptake of soybean.","PeriodicalId":52132,"journal":{"name":"作物学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"作物学报","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/sp.j.1006.2021.04237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: To investigate the effects of maize and soybean intercropping on nitrogen and phosphorus uptake, nodule growth, and nitrogen fixation in soybean, a pot experiment was conducted with two phosphorus (P) rates (low P -P50 and sufficient P -P100). The results showed that, compared with monocropped soybean, intercropping of soybean and maize significantly increased the nodule number, nodule weight, leghemoglobin content, and nitrogenase activity of nodule, and promoted the growth and nitrogen (N) and phosphorus uptake of soybean under P50 and P100 rates. The concentrations of N, P, and the activities of acid phosphatase, phytase in nodules in intercropped soybean were significantly higher than those of monocropped soybean under P50 and P100 rates, and the activities of acid phosphatase and phytase showed the highest values under IS-P50 treatment. In addition, the P concentration in the nodules of intercropped soybean under P50 rate was significantly higher than that of monocropped soybean under P90 rate. so In summary, to maintain the larger phosphorus content for nitrogen fixation of soybean under phosphorus deficiency, the soybean and maize intercropping system increased the phosphorus concentration in the nodules mainly by enhancing the activities of acid phosphatase and phytase in the nodules, and thus promoted the growth and nitrogen uptake of soybean.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低磷条件下玉米大豆间作对大豆根瘤生长和固氮的影响
为了研究玉米和大豆间作对大豆氮磷吸收、根瘤生长和固氮的影响,采用两种磷(P)水平(低P-P50和充足P-P100)进行了盆栽试验。结果表明,与单作大豆相比,在P50和P100水平下,大豆和玉米间作显著提高了根瘤数、根瘤重、血红蛋白含量和固氮酶活性,促进了大豆的生长和氮磷吸收。间作大豆根瘤中N、P浓度及酸性磷酸酶、植酸酶活性在P50和P100处理下均显著高于单作大豆,而在IS-P50处理下酸性磷酸酶和植酸酶活性最高。此外,间作大豆在P50处理下根瘤中的磷浓度显著高于单作大豆在P90处理下的磷浓度。综上所述,为了在缺磷条件下保持大豆较大的固氮磷含量,大豆和玉米间作系统主要通过提高根瘤中酸性磷酸酶和植酸酶的活性来提高根瘤中的磷浓度,从而促进大豆的生长和氮素吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
作物学报
作物学报 Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.70
自引率
0.00%
发文量
89
期刊介绍: The major aims of AAS are to report the progresses in the disciplines of crop breeding, crop genetics, crop cultivation, crop physiology, ecology, biochemistry, germplasm resources, grain chemistry, grain storage and processing, bio-technology and biomathematics etc. mainly in China and abroad. AAS provides regular columns for Original papers, Reviews, and Research notes. The strict peer-review procedure guarantees the academic level and raises the reputation of the journal. The readership of AAS is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic level.
期刊最新文献
Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River Different responses of rice cultivars to salt stress and the underlying mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1