Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM

Nicolaus Euclides Wahyu Nugroho, A. Harjoko
{"title":"Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM","authors":"Nicolaus Euclides Wahyu Nugroho, A. Harjoko","doi":"10.22146/IJCCS.66062","DOIUrl":null,"url":null,"abstract":"Hiragana and katakana handwritten characters are often used when writing words in Japanese. Japanese itself is often used by native Japanese as well as people learning Japanese around the world. Hiragana and katakana characters themselves are difficult to learn because many characters are similar to one another. In this study, hiragana and basic katakana, dakuten, handakuten, and youon were used, which were taken from the respondents using a questionnaire. This study used the CNN method which will be compared with a combination of the CNN and SVM methods which have been designed to identify each character that has been prepared. Preprocessing of character images uses the methods of image resizing, grayscaling, binarization, dilation, and erosion. The preprocessed results will be input for CNN as a feature extraction tool and SVM as a tool for character recognition. The results of this study obtained accuracy with the following parameters: 69×69 image size, 3 patience values, val_loss monitor callbacks, Nadam optimization function, 0.001 learning rate value, 30 epochs value, and SVM RBF kernel. If using a system that only uses the CNN network, the accuracy is 87.82%. The results obtained when using a combination of CNN and SVM were 88.21%.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.66062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hiragana and katakana handwritten characters are often used when writing words in Japanese. Japanese itself is often used by native Japanese as well as people learning Japanese around the world. Hiragana and katakana characters themselves are difficult to learn because many characters are similar to one another. In this study, hiragana and basic katakana, dakuten, handakuten, and youon were used, which were taken from the respondents using a questionnaire. This study used the CNN method which will be compared with a combination of the CNN and SVM methods which have been designed to identify each character that has been prepared. Preprocessing of character images uses the methods of image resizing, grayscaling, binarization, dilation, and erosion. The preprocessed results will be input for CNN as a feature extraction tool and SVM as a tool for character recognition. The results of this study obtained accuracy with the following parameters: 69×69 image size, 3 patience values, val_loss monitor callbacks, Nadam optimization function, 0.001 learning rate value, 30 epochs value, and SVM RBF kernel. If using a system that only uses the CNN network, the accuracy is 87.82%. The results obtained when using a combination of CNN and SVM were 88.21%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN-SVM的平假名和片假名手写体的音译
在日语中书写单词时经常使用平假名和片假名手写字符。日本人和世界各地学习日语的人经常使用日语。平假名和片假名字符本身很难学习,因为许多字符彼此相似。在这项研究中,使用了平假名和基本片假名、dakuten、handakuten和youon,这些都是使用问卷从受访者中获取的。本研究使用了CNN方法,该方法将与CNN和SVM方法的组合进行比较,后者被设计用于识别已准备的每个字符。字符图像的预处理采用图像大小调整、灰度缩放、二值化、膨胀和侵蚀等方法。预处理后的结果将被输入CNN作为特征提取工具,SVM作为字符识别工具。本研究的结果在以下参数下获得了准确性:69×69图像大小、3个耐心值、val_loss监视器回调、Nadam优化函数、0.001学习率值、30个历元值和SVM RBF核。如果使用仅使用CNN网络的系统,准确率为87.82%。使用CNN和SVM组合时获得的结果为88.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1