XFEM Analysis of Strain Rate Dependent Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2023-01-23 DOI:10.1115/1.4056729
B. Kalita, J. R.
{"title":"XFEM Analysis of Strain Rate Dependent Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel","authors":"B. Kalita, J. R.","doi":"10.1115/1.4056729","DOIUrl":null,"url":null,"abstract":"\n Additively manufactured (AM) specimens of 17-4PH stainless steel corresponding to the three-point bend test, compact tension test and single edge cracks were analysed using Extended Finite Element Method (XFEM) approach. A two-dimensional and three-dimensional elastic-plastic simulation were conducted using “Abaqus 6.14” software based on the experimental results and validated with the simulation results. In XFEM, the partition of unity (PU) was used to model a crack in the standard finite element mesh. Based on simulation results, the present study compares the mechanical properties of AM 17-4 PH stainless steel samples with those of wrought 17-4 PH samples. Stress intensity factor and J integral were used to measure fracture toughness of the specimens. The change in fracture toughness with strain rate was evaluated by simulating two-dimensional compact tension specimens. The presence of defects such as pores resulting from entrapped gas, un-melted regions, and powder particles resulting from lack of fusion were the main reasons for lower elongation to failure of LPBF produced 17-4PH SS reported in the literature.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4056729","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Additively manufactured (AM) specimens of 17-4PH stainless steel corresponding to the three-point bend test, compact tension test and single edge cracks were analysed using Extended Finite Element Method (XFEM) approach. A two-dimensional and three-dimensional elastic-plastic simulation were conducted using “Abaqus 6.14” software based on the experimental results and validated with the simulation results. In XFEM, the partition of unity (PU) was used to model a crack in the standard finite element mesh. Based on simulation results, the present study compares the mechanical properties of AM 17-4 PH stainless steel samples with those of wrought 17-4 PH samples. Stress intensity factor and J integral were used to measure fracture toughness of the specimens. The change in fracture toughness with strain rate was evaluated by simulating two-dimensional compact tension specimens. The presence of defects such as pores resulting from entrapped gas, un-melted regions, and powder particles resulting from lack of fusion were the main reasons for lower elongation to failure of LPBF produced 17-4PH SS reported in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加17-4PH不锈钢应变速率相关力学性能的XFEM分析
采用扩展有限元法(XFEM)分析了与三点弯曲试验、紧凑拉伸试验和单边裂纹相对应的17-4PH不锈钢增材(AM)试样。基于实验结果,使用“Abaqus 6.14”软件进行了二维和三维弹塑性模拟,并与模拟结果进行了验证。在XFEM中,使用单位划分(PU)对标准有限元网格中的裂纹进行建模。基于模拟结果,本研究将AM 17-4PH不锈钢样品与锻造17-4PH样品的力学性能进行了比较。采用应力强度因子和J积分测量了试样的断裂韧性。通过模拟二维致密拉伸试样,评估了断裂韧性随应变速率的变化。文献中报道的LPBF生产的17-4PH SS的断裂伸长率较低的主要原因是存在缺陷,如由截留气体引起的孔隙、未熔化区域和由未熔合引起的粉末颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1