Engineering programmable RNA synthetic circuits in mammalian cells

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2021-12-01 DOI:10.1016/j.coisb.2021.100395
Federica Cella, Ilaria De Martino , Francesca Piro , Velia Siciliano
{"title":"Engineering programmable RNA synthetic circuits in mammalian cells","authors":"Federica Cella,&nbsp;Ilaria De Martino ,&nbsp;Francesca Piro ,&nbsp;Velia Siciliano","doi":"10.1016/j.coisb.2021.100395","DOIUrl":null,"url":null,"abstract":"<div><p><span>The ability to reprogram mammalian cells with tight spatiotemporal control </span>over gene expression<span> and cell response has provided a powerful means to address biomedical challenges. To provide safer synthetic biology products, RNA<span> has recently emerged as an alternative to DNA to deliver transgenes into mammalian cells. In this review, we discuss recent tools implemented to engineer programmable RNA-based synthetic circuits in mammalian cells. We examine the limitations of RNA-encoded gene delivery, and we highlight significant studies that successfully improved payloads expression and persistence and maximized RNA delivery efficiency. Finally, we conclude by discussing examples of RNA-based therapeutics and future perspectives.</span></span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310021000901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to reprogram mammalian cells with tight spatiotemporal control over gene expression and cell response has provided a powerful means to address biomedical challenges. To provide safer synthetic biology products, RNA has recently emerged as an alternative to DNA to deliver transgenes into mammalian cells. In this review, we discuss recent tools implemented to engineer programmable RNA-based synthetic circuits in mammalian cells. We examine the limitations of RNA-encoded gene delivery, and we highlight significant studies that successfully improved payloads expression and persistence and maximized RNA delivery efficiency. Finally, we conclude by discussing examples of RNA-based therapeutics and future perspectives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在哺乳动物细胞中设计可编程RNA合成电路
通过对基因表达和细胞反应的严格时空控制对哺乳动物细胞进行重编程的能力为解决生物医学挑战提供了强有力的手段。为了提供更安全的合成生物学产品,最近出现了RNA作为DNA的替代品,将转基因传递到哺乳动物细胞中。在这篇综述中,我们讨论了在哺乳动物细胞中用于设计基于可编程rna的合成电路的最新工具。我们研究了RNA编码基因传递的局限性,并重点介绍了成功改善有效载荷表达和持久性以及最大化RNA传递效率的重要研究。最后,我们通过讨论基于rna的治疗方法的例子和未来的展望来结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1