Adaptive group-wise modeling of thermally induced errors of a turning center

IF 0.8 4区 工程技术 Q4 ENGINEERING, MECHANICAL Transactions of The Canadian Society for Mechanical Engineering Pub Date : 2023-03-24 DOI:10.1139/tcsme-2022-0116
Haitao Zhao, Yongbo Tang, Shuixiang Zhang
{"title":"Adaptive group-wise modeling of thermally induced errors of a turning center","authors":"Haitao Zhao, Yongbo Tang, Shuixiang Zhang","doi":"10.1139/tcsme-2022-0116","DOIUrl":null,"url":null,"abstract":"Traditional multivariate regression analysis-based thermal error models use only one polynomial of several temperature variables to predict thermal errors, which will produce lower local prediction accuracy for a longer machining process with sudden changes of machining parameters, and hence the group-wise modeling method is proposed in this paper. Resorting to hard break points and soft break points, the grouping work is completed in two steps: hard grouping and soft grouping. The positions of hard break points are optimized using the genetic algorithm toolbox in Matlab software to realize adaptive grouping. The mechanism for updating the thermal error model coefficients vectors for different soft groups is developed. The modeling test is carried out on a turning center for which the positions of thermal key points are optimized. The prediction results for radial and axial thermal errors show that four hard break points can basically meet the requirements at the di value of 80%, so the group-wise modeling method is helpful to advance the prediction accuracy of thermal errors.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2022-0116","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional multivariate regression analysis-based thermal error models use only one polynomial of several temperature variables to predict thermal errors, which will produce lower local prediction accuracy for a longer machining process with sudden changes of machining parameters, and hence the group-wise modeling method is proposed in this paper. Resorting to hard break points and soft break points, the grouping work is completed in two steps: hard grouping and soft grouping. The positions of hard break points are optimized using the genetic algorithm toolbox in Matlab software to realize adaptive grouping. The mechanism for updating the thermal error model coefficients vectors for different soft groups is developed. The modeling test is carried out on a turning center for which the positions of thermal key points are optimized. The prediction results for radial and axial thermal errors show that four hard break points can basically meet the requirements at the di value of 80%, so the group-wise modeling method is helpful to advance the prediction accuracy of thermal errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车削中心热致误差的自适应成组建模
传统的基于多元回归分析的热误差模型只使用几个温度变量的一个多项式来预测热误差,对于加工参数突然变化的较长加工过程,这会产生较低的局部预测精度,因此本文提出了成组建模方法。根据硬断点和软断点,分组工作分为硬分组和软分组两个步骤。利用Matlab软件中的遗传算法工具箱对硬断点的位置进行优化,实现自适应分组。开发了用于更新不同软组的热误差模型系数向量的机制。对车削中心进行了热关键点位置优化建模试验。径向和轴向热误差的预测结果表明,在di值为80%时,四个硬断点基本能满足要求,因此分组建模方法有助于提高热误差的预报精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
53
审稿时长
5 months
期刊介绍: Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.
期刊最新文献
Research on Optimal Fast Terminal Sliding Mode Control of Horizontal Vibration of High-speed Elevator Car System A Study on the Contact Quality Improvement of Fin to Tube Assemblies ERROR COMPENSATION OF A 2TPR&2TPS PARALLEL MECHANISM BASED ON PARTICLE SWARM OPTIMIZATION Trends in Research on Latent Heat Storage Using PCM, A Bibliometric Analysis Comparison of Flow and Loss Aspects in the Rotors of a Counter Rotating Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1