Study design of deep learning based automatic detection of cerebrovascular diseases on medical imaging: a position paper from Chinese Association of Radiologists

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2022-11-01 DOI:10.1016/j.imed.2022.07.001
Longjiang Zhang , Zhao Shi , Min Chen , Yingmin Chen , Jingliang Cheng , Li Fan , Nan Hong , Wenxiao Jia , Guihua Jiang , Shenghong Ju , Xiaogang Li , Xiuli Li , Changhong Liang , Weihua Liao , Shiyuan Liu , Zaiming Lu , Lin Ma , Ke Ren , Pengfei Rong , Bin Song , Zhengyu Jin
{"title":"Study design of deep learning based automatic detection of cerebrovascular diseases on medical imaging: a position paper from Chinese Association of Radiologists","authors":"Longjiang Zhang ,&nbsp;Zhao Shi ,&nbsp;Min Chen ,&nbsp;Yingmin Chen ,&nbsp;Jingliang Cheng ,&nbsp;Li Fan ,&nbsp;Nan Hong ,&nbsp;Wenxiao Jia ,&nbsp;Guihua Jiang ,&nbsp;Shenghong Ju ,&nbsp;Xiaogang Li ,&nbsp;Xiuli Li ,&nbsp;Changhong Liang ,&nbsp;Weihua Liao ,&nbsp;Shiyuan Liu ,&nbsp;Zaiming Lu ,&nbsp;Lin Ma ,&nbsp;Ke Ren ,&nbsp;Pengfei Rong ,&nbsp;Bin Song ,&nbsp;Zhengyu Jin","doi":"10.1016/j.imed.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, with the development of artificial intelligence, especially deep learning technology, researches on automatic detection of cerebrovascular diseases on medical images have made tremendous progress and these models are gradually entering into clinical practice. However, because of the complexity and flexibility of the deep learning algorithms, these researches have great variability on model building, validation process, performance description and results interpretation. The lack of a reliable, consistent, standardized design protocol has, to a certain extent, affected the progress of clinical translation and technology development of computer aided detection systems. After reviewing a large number of literatures and extensive discussion with domestic experts, this position paper put forward recommendations of standardized design on the key steps of deep learning-based automatic image detection models for cerebrovascular diseases. With further research and application expansion, this position paper would continue to be updated and gradually extended to evaluate the generalizability and clinical application efficacy of such tools.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"2 4","pages":"Pages 221-229"},"PeriodicalIF":4.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667102622000687/pdfft?md5=cbfd220c0f8f1d6f7a200fe6a89b4bea&pid=1-s2.0-S2667102622000687-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102622000687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, with the development of artificial intelligence, especially deep learning technology, researches on automatic detection of cerebrovascular diseases on medical images have made tremendous progress and these models are gradually entering into clinical practice. However, because of the complexity and flexibility of the deep learning algorithms, these researches have great variability on model building, validation process, performance description and results interpretation. The lack of a reliable, consistent, standardized design protocol has, to a certain extent, affected the progress of clinical translation and technology development of computer aided detection systems. After reviewing a large number of literatures and extensive discussion with domestic experts, this position paper put forward recommendations of standardized design on the key steps of deep learning-based automatic image detection models for cerebrovascular diseases. With further research and application expansion, this position paper would continue to be updated and gradually extended to evaluate the generalizability and clinical application efficacy of such tools.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的医学影像脑血管疾病自动检测研究设计——中国放射科医师协会立场文件
近年来,随着人工智能特别是深度学习技术的发展,医学图像自动检测脑血管疾病的研究取得了巨大进展,这些模型逐渐进入临床实践。然而,由于深度学习算法的复杂性和灵活性,这些研究在模型构建、验证过程、性能描述和结果解释等方面存在很大的可变性。缺乏可靠、一致、规范的设计方案,在一定程度上影响了计算机辅助检测系统临床转译和技术发展的进展。在查阅了大量文献并与国内专家进行了广泛讨论后,本文对基于深度学习的脑血管疾病自动图像检测模型的关键步骤提出了标准化设计建议。随着研究和应用的进一步扩展,本立场文件将不断更新并逐步扩展,以评估这些工具的通用性和临床应用效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Impact of data balancing a multiclass dataset before the creation of association rules to study bacterial vaginosis Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review Improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging Increasing the accuracy and reproducibility of positron emission tomography radiomics for predicting pelvic lymph node metastasis in patients with cervical cancer using 3D local binary pattern-based texture features A clinical decision support system using rough set theory and machine learning for disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1