U-net-based pseudoseismic imaging for the short-offset transient electromagnetic method

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysics and Engineering Pub Date : 2023-03-03 DOI:10.1093/jge/gxad014
Yang Zhao, Xin Wu, Weiying Chen
{"title":"U-net-based pseudoseismic imaging for the short-offset transient electromagnetic method","authors":"Yang Zhao, Xin Wu, Weiying Chen","doi":"10.1093/jge/gxad014","DOIUrl":null,"url":null,"abstract":"\n Short-offset transient electromagnetic (SOTEM) is an innovation of the artificial-source electromagnetic method, and detection is conducted in the near-source area using an electromagnetic formation wave so that the signal has strong strength and large bandwidth. Inspired by the parallelism of the propagation of seismic body waves and EM formation waves, this paper intends to implement pseudoseismic imaging (PSI) on SOTEM data to give play to the high resolution of SOTEM. Traditionally, to perform the wave-field transform (WFT), a set of ill-posed linear equations needs to be solved, and the solving process has strong ambiguity and instability. This paper presents a new method for performing WFT based on U-Net, and a nonlinear mapping from the EM diffusion field to the pseudoseismic wave field under the same velocity model is established by training the network. To eliminate the error that might result when the time‒depth transform is conducted for the wave-field record, another U-Net is used to transform the wave-field record into a depth-offset profile to accomplish the whole pseudoseismic imaging process for SOTEM. Simulation and measured data are used to validate the effect of the networks, and the results indicate that this approach is highly feasible, thus providing a new strategy for using SOTEM to detect sedimentary strata.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad014","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Short-offset transient electromagnetic (SOTEM) is an innovation of the artificial-source electromagnetic method, and detection is conducted in the near-source area using an electromagnetic formation wave so that the signal has strong strength and large bandwidth. Inspired by the parallelism of the propagation of seismic body waves and EM formation waves, this paper intends to implement pseudoseismic imaging (PSI) on SOTEM data to give play to the high resolution of SOTEM. Traditionally, to perform the wave-field transform (WFT), a set of ill-posed linear equations needs to be solved, and the solving process has strong ambiguity and instability. This paper presents a new method for performing WFT based on U-Net, and a nonlinear mapping from the EM diffusion field to the pseudoseismic wave field under the same velocity model is established by training the network. To eliminate the error that might result when the time‒depth transform is conducted for the wave-field record, another U-Net is used to transform the wave-field record into a depth-offset profile to accomplish the whole pseudoseismic imaging process for SOTEM. Simulation and measured data are used to validate the effect of the networks, and the results indicate that this approach is highly feasible, thus providing a new strategy for using SOTEM to detect sedimentary strata.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于U-net的短偏移瞬变电磁法伪地震成像
短偏移瞬变电磁(SOTEM)是人工源电磁方法的创新,利用电磁地层波在近源区域进行检测,使信号具有较强的强度和较大的带宽。受地震体波和EM地层波传播平行性的启发,本文打算在SOTEM数据上实现伪地震成像(PSI),以发挥SOTEM的高分辨率。传统上,要进行波场变换,需要求解一组不适定的线性方程组,并且求解过程具有很强的模糊性和不稳定性。本文提出了一种基于U-Net的WFT新方法,并通过训练网络,建立了在相同速度模型下从EM扩散场到伪地震波场的非线性映射。为了消除对波场记录进行时间-深度变换时可能产生的误差,使用另一个U-Net将波场记录变换为深度偏移剖面,以完成SOTEM的整个伪地震成像过程。通过仿真和实测数据验证了网络的效果,结果表明该方法是高度可行的,为利用SOTEM探测沉积地层提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
期刊最新文献
Quasi-2D inversion of surface large fixed-loop transient electromagnetic sounding data Automatic thrust/fault and edge location with gravity data across the Shillong plateau and Mikir hill complex in northeastern India using the most positive and most negative curvature interpretation High-order Azimuth Coherent Imaging for Microseismic Location Characteristic analysis and data comparative of linear and nonlinear low frequency sweep in vibroseis Viscoacoustic least squares reverse-time migration using L1-2 norm sparsity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1