Degradation of Aniline & Para- Chloroaniline from Water by Adsorption Coupled with Electrochemical Regeneration

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2023-08-30 DOI:10.22146/ajche.85055
Syed muhammad Shahid Hussain, S. N. Hussain, H. Asghar, H. Sattar
{"title":"Degradation of Aniline & Para- Chloroaniline from Water by Adsorption Coupled with Electrochemical Regeneration","authors":"Syed muhammad Shahid Hussain, S. N. Hussain, H. Asghar, H. Sattar","doi":"10.22146/ajche.85055","DOIUrl":null,"url":null,"abstract":"Treatment methods for water-containing organics are gaining significant attraction in modern-day research. Amines are an important organic compound class encountered in industrial wastewater streams. The current research paper focuses on studying the adsorption behavior of aniline and parachloro-aniline using a graphite-based adsorbent, namely, Nyex-1000, and the subsequent regeneration of the adsorbent.   To determine Nyex-1000's adsorption capacity, several parameters, including time, pH, and concentration, were assessed. Adsorption isotherms, kinetics, and used adsorbent regeneration were also investigated. The adsorption of aniline and parachloro-aniline was found to be quite rapid owing to its non-porous nature. Moreover, the low energy requirement makes the process quite economical due to the high electrical conductivity of the adsorbent. The adsorption data was fitted to Langmuir, Freundlich, Redlich Peterson, Sips, and Toth isotherm models. In aniline’s case, Langmuir and Parachloro-aniline Sips models gave the best fitting with the highest R2 value.  A regeneration efficiency of 100% was observed in case of both aniline and parachloro-aniline by passing a charge of 5 and 10 coulombs per gram through the adsorbent bed 10 mm in thickness. Adsorption for parachloro-aniline  was found to be 0.88 mg/g, and for aniline was found to be 0.40 mg/g. The reduction in adsorption capacity was minimal after several adsorption and regeneration cycles. This study found that spent adsorbent could be regenerated effectively through electrochemical regeneration.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.85055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Treatment methods for water-containing organics are gaining significant attraction in modern-day research. Amines are an important organic compound class encountered in industrial wastewater streams. The current research paper focuses on studying the adsorption behavior of aniline and parachloro-aniline using a graphite-based adsorbent, namely, Nyex-1000, and the subsequent regeneration of the adsorbent.   To determine Nyex-1000's adsorption capacity, several parameters, including time, pH, and concentration, were assessed. Adsorption isotherms, kinetics, and used adsorbent regeneration were also investigated. The adsorption of aniline and parachloro-aniline was found to be quite rapid owing to its non-porous nature. Moreover, the low energy requirement makes the process quite economical due to the high electrical conductivity of the adsorbent. The adsorption data was fitted to Langmuir, Freundlich, Redlich Peterson, Sips, and Toth isotherm models. In aniline’s case, Langmuir and Parachloro-aniline Sips models gave the best fitting with the highest R2 value.  A regeneration efficiency of 100% was observed in case of both aniline and parachloro-aniline by passing a charge of 5 and 10 coulombs per gram through the adsorbent bed 10 mm in thickness. Adsorption for parachloro-aniline  was found to be 0.88 mg/g, and for aniline was found to be 0.40 mg/g. The reduction in adsorption capacity was minimal after several adsorption and regeneration cycles. This study found that spent adsorbent could be regenerated effectively through electrochemical regeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸附-电化学再生法降解水中苯胺和对氯苯胺
含有机物水的处理方法在现代研究中越来越受到重视。胺是工业废水流中遇到的一类重要有机化合物。本研究论文重点研究了石墨基吸附剂Nyex-1000对苯胺和对氯苯胺的吸附行为,以及吸附剂的后续再生。为了确定Nyex-1000的吸附能力,评估了几个参数,包括时间、pH和浓度。还研究了吸附等温线、动力学和所用吸附剂的再生。发现苯胺和对氯苯胺的吸附由于其无孔性质而相当快速。此外,由于吸附剂的高导电性,低能量要求使得该工艺相当经济。吸附数据符合Langmuir、Freundlich、Redlich-Peterson、Sips和Toth等温线模型。在苯胺的情况下,Langmuir和对氯苯胺Sips模型给出了最佳拟合,R2值最高。在苯胺和对氯苯胺的情况下,通过使每克5和10库仑的电荷通过厚度为10mm的吸附床,观察到100%的再生效率。发现对氯苯胺的吸附为0.88mg/g,而对苯胺的吸附则为0.40mg/g。在几个吸附和再生循环之后,吸附容量的降低是最小的。本研究发现,用过的吸附剂可以通过电化学再生得到有效的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1