A systematic study of a droplet breakup process in decaying homogeneous isotropic turbulence using a mesoscopic simulation approach

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2022-11-20 DOI:10.1080/14685248.2022.2146700
Jun Lai, Tao Chen, Shengqi Zhang, Zuoli Xiao, Shiyi Chen, Lianping Wang
{"title":"A systematic study of a droplet breakup process in decaying homogeneous isotropic turbulence using a mesoscopic simulation approach","authors":"Jun Lai, Tao Chen, Shengqi Zhang, Zuoli Xiao, Shiyi Chen, Lianping Wang","doi":"10.1080/14685248.2022.2146700","DOIUrl":null,"url":null,"abstract":"ABSTRACT The breakup of a spherical droplet in a decaying homogeneous isotropic turbulence is studied by solving the Cahn–Hilliard–Navier–Stokes equations. This flow provides a great opportunity to study the interactions of turbulent kinetic energy and interfacial free energy and their effects on the breakup dynamics. Three distinct stages of droplet evolution, namely, the deformation stage, the breakup stage, and the restoration stage, are identified and then analysed systematically from several perspectives: a geometric perspective, a dynamic perspective, a global energetic perspective, and a multiscale energy transfer perspective. It is found that the ending time of the breakup stage can be estimated by the Hinze criterion. The kinetic energy of the two-phase flow during the breakup stage is found to have a power-law decay with an exponent , compared to for the single-phase flow, mainly due to the enhanced viscous dissipation generated by the daughter droplets. Energy spectra of the two-phase flow show power-law decay, with a slope between and , at high wave numbers, both in the Fourier spectral space and in the spherical harmonics space.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2146700","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The breakup of a spherical droplet in a decaying homogeneous isotropic turbulence is studied by solving the Cahn–Hilliard–Navier–Stokes equations. This flow provides a great opportunity to study the interactions of turbulent kinetic energy and interfacial free energy and their effects on the breakup dynamics. Three distinct stages of droplet evolution, namely, the deformation stage, the breakup stage, and the restoration stage, are identified and then analysed systematically from several perspectives: a geometric perspective, a dynamic perspective, a global energetic perspective, and a multiscale energy transfer perspective. It is found that the ending time of the breakup stage can be estimated by the Hinze criterion. The kinetic energy of the two-phase flow during the breakup stage is found to have a power-law decay with an exponent , compared to for the single-phase flow, mainly due to the enhanced viscous dissipation generated by the daughter droplets. Energy spectra of the two-phase flow show power-law decay, with a slope between and , at high wave numbers, both in the Fourier spectral space and in the spherical harmonics space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用细观模拟方法系统研究衰减均匀各向同性湍流中液滴破碎过程
摘要通过求解Cahn–Hilliard–Navier–Stokes方程,研究了衰减均匀各向同性湍流中球形液滴的破裂。这种流动为研究湍流动能和界面自由能的相互作用及其对破碎动力学的影响提供了一个很好的机会。确定了液滴演化的三个不同阶段,即变形阶段、破碎阶段和恢复阶段,然后从几个角度进行了系统分析:几何角度、动力学角度、全局能量角度和多尺度能量转移角度。研究发现,分手阶段的结束时间可以用Hinze准则来估计。与单相流相比,两相流在破碎阶段的动能具有指数幂律衰减,这主要是由于子液滴产生的粘性耗散增强。两相流的能谱在傅立叶谱空间和球谐波空间中都显示出幂律衰减,在高波数下,斜率在和之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1