Significant strengthening of copper-based composites using boron nitride nanotubes

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Minerals, Metallurgy, and Materials Pub Date : 2023-08-25 DOI:10.1007/s12613-023-2633-6
Naiqi Chen, Quan Li, Youcao Ma, Kunming Yang, Jian Song, Yue Liu, Tongxiang Fan
{"title":"Significant strengthening of copper-based composites using boron nitride nanotubes","authors":"Naiqi Chen,&nbsp;Quan Li,&nbsp;Youcao Ma,&nbsp;Kunming Yang,&nbsp;Jian Song,&nbsp;Yue Liu,&nbsp;Tongxiang Fan","doi":"10.1007/s12613-023-2633-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol% BNNTs/Cu and 3vol% CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K, both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of ∼404 MPa, which is approximately 170% higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27% and 29% higher than those of CNTs/Cu, respectively. This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 9","pages":"1764 - 1778"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2633-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol% BNNTs/Cu and 3vol% CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K, both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of ∼404 MPa, which is approximately 170% higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27% and 29% higher than those of CNTs/Cu, respectively. This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化硼纳米管对铜基复合材料的显著强化
纳米管,如氮化硼纳米管(BNNTs)和碳纳米管(CNTs),具有优异的力学性能。本文采用球磨和退火法制备了高质量的BNNTs。随后,通过球磨、火花等离子烧结和热轧制备了分散良好的3vol% bnnt /Cu和3vol% CNTs/Cu复合材料。并对bnnt /Cu和CNTs/Cu复合材料的力学性能和强化机理进行了比较和讨论。在293 K时,bnnt /Cu和CNTs/Cu复合材料的极限抗拉强度(UTS)相似,为~ 404 MPa,比纯Cu高约170%。然而,在873 K时,bnnt /Cu的UTS和屈服强度分别比CNTs/Cu高27%和29%。这种差异可归因于与CNTs/Cu界面相比,bnnt具有更强的壁间抗剪切能力、更高的热机械稳定性以及bnnt /Cu界面上更强的键合。这些发现为bnnt作为金属基复合材料的优良增强材料的潜力提供了有价值的见解,特别是在高温下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
期刊最新文献
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1