Emerging methods in botanical DNA/RNA extraction

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-06-16 DOI:10.1002/aps3.11530
Nora Mitchell, Edward V. McAssey, Richard G. J. Hodel
{"title":"Emerging methods in botanical DNA/RNA extraction","authors":"Nora Mitchell,&nbsp;Edward V. McAssey,&nbsp;Richard G. J. Hodel","doi":"10.1002/aps3.11530","DOIUrl":null,"url":null,"abstract":"<p>Analyses of nucleic acids (DNA and RNA) have become a staple tool for botanists to answer questions across a wide variety of disciplines, ranging from population genetics to biogeography, ecology, development, microbiology, physiology, and phylogenetics. The rise of “next-generation” or “high-throughput” sequencing in particular has resulted in reduced sequencing costs and an explosion in the number of botanical studies using DNA or RNA data (Egan et al., <span>2012</span>). Yet, the crucial step of extracting these nucleic acids from plant tissues can be extremely difficult and is often overlooked or under-emphasized. Although there are many options for nucleic acid kits and nearly countless papers (over 22,000 at the time of this special issue) referencing a “modified” version of the Doyle and Doyle (<span>1987</span>) cetyltrimethylammonium bromide (CTAB) extraction protocol, taxon-specific difficulties render many of these methods ineffective. Troubleshooting the extraction step remains a major sink of researchers' time and energy, potentially acting as a barrier to downstream analyses and answering fundamental botanical questions.</p><p>Difficulties in nucleic acid extraction arise due to factors such as the diversity and volume of secondary metabolites expressed by plants (Varma et al., <span>2007</span>), degradation during storage (Pyle and Adams, <span>1989</span>), contamination from DNA of organisms in the plant microbiome (Trivedi et al., <span>2022</span>), and the need for high-molecular-weight nucleic acids for downstream analyses (Pollard et al., <span>2018</span>). Addressing these issues requires knowledge of both the underlying chemistry involved during each step of the extraction process and the requirements of the isolated product. The 12 papers in this special issue, “Emerging Methods in Botanical DNA/RNA Extraction,” highlight the current state of knowledge in nucleic acid extractions, including both the key challenges and creative innovations that have been developed to circumvent these difficulties to address a variety of exciting botanical questions.</p><p>N.M. prepared the first draft of the manuscript. All authors provided select article summaries and reviewing and editing assistance and approved the final version of the manuscript.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Analyses of nucleic acids (DNA and RNA) have become a staple tool for botanists to answer questions across a wide variety of disciplines, ranging from population genetics to biogeography, ecology, development, microbiology, physiology, and phylogenetics. The rise of “next-generation” or “high-throughput” sequencing in particular has resulted in reduced sequencing costs and an explosion in the number of botanical studies using DNA or RNA data (Egan et al., 2012). Yet, the crucial step of extracting these nucleic acids from plant tissues can be extremely difficult and is often overlooked or under-emphasized. Although there are many options for nucleic acid kits and nearly countless papers (over 22,000 at the time of this special issue) referencing a “modified” version of the Doyle and Doyle (1987) cetyltrimethylammonium bromide (CTAB) extraction protocol, taxon-specific difficulties render many of these methods ineffective. Troubleshooting the extraction step remains a major sink of researchers' time and energy, potentially acting as a barrier to downstream analyses and answering fundamental botanical questions.

Difficulties in nucleic acid extraction arise due to factors such as the diversity and volume of secondary metabolites expressed by plants (Varma et al., 2007), degradation during storage (Pyle and Adams, 1989), contamination from DNA of organisms in the plant microbiome (Trivedi et al., 2022), and the need for high-molecular-weight nucleic acids for downstream analyses (Pollard et al., 2018). Addressing these issues requires knowledge of both the underlying chemistry involved during each step of the extraction process and the requirements of the isolated product. The 12 papers in this special issue, “Emerging Methods in Botanical DNA/RNA Extraction,” highlight the current state of knowledge in nucleic acid extractions, including both the key challenges and creative innovations that have been developed to circumvent these difficulties to address a variety of exciting botanical questions.

N.M. prepared the first draft of the manuscript. All authors provided select article summaries and reviewing and editing assistance and approved the final version of the manuscript.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物DNA/RNA提取的新兴方法
核酸(DNA和RNA)分析已成为植物学家回答各种学科问题的主要工具,从群体遗传学到生物地理学、生态学、发展学、微生物学、生理学和系统发育学。特别是“下一代”或“高通量”测序的兴起,降低了测序成本,并使使用DNA或RNA数据的植物学研究数量激增(Egan等人,2012)。然而,从植物组织中提取这些核酸的关键步骤可能极其困难,并且经常被忽视或忽视。尽管核酸试剂盒有很多选择,而且有无数论文(在本特刊时超过22000篇)引用了Doyle和Doyle(1987)十六烷基三甲基溴化铵(CTAB)提取方案的“修改”版本,但分类单元特有的困难使许多方法无效。提取步骤的故障排除仍然是研究人员时间和精力的主要消耗,可能会成为下游分析和回答基本植物学问题的障碍。核酸提取的困难是由于植物表达的次级代谢产物的多样性和体积(Varma等人,2007)、储存过程中的降解(Pyle和Adams,1989)、植物微生物组中生物体DNA的污染(Trivedi等人,2022)等因素造成的,以及下游分析对高分子量核酸的需求(Pollard等人,2018)。解决这些问题需要了解提取过程中每个步骤所涉及的潜在化学成分和分离产品的要求。本期特刊《植物DNA/RNA提取的新兴方法》中的12篇论文强调了核酸提取的知识现状,包括为解决各种令人兴奋的植物学问题而开发的关键挑战和创造性创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1