Prediction of Centromere Location in Human Chromosome Using Convolutional Neural Networks

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS TEM Journal-Technology Education Management Informatics Pub Date : 2023-08-28 DOI:10.18421/tem123-02
Ajdin Vatreš, E. Kadrić, N. Pojskić
{"title":"Prediction of Centromere Location in Human Chromosome Using Convolutional Neural Networks","authors":"Ajdin Vatreš, E. Kadrić, N. Pojskić","doi":"10.18421/tem123-02","DOIUrl":null,"url":null,"abstract":"Accurate determination of chromosome centromere location is of high importance in cytogenetics, particularly in karyotyping, chromosome classification and determination of exposure to genotoxic environmental effects. This study investigates the ability of CNN to accurately predict the human chromosome centromere location and the effect centering chromosomes in images, by predicted centromere location, has on classification accuracy. Dataset, used to train and test CNN models, contained 8283 annotated individual chromosome images. Prior to performing centromere detection, followed by chromosome classification, the individual chromosome images are preprocessed using sequence of filtering algorithms. The CNN model achieved an average error of 0.5586 and 0.4543 in predicting x and y coordinates of centromere location, respectively. The achieved classification accuracy of randomly oriented and centered chromosomes in images, is 71.10 and 96.73%, respectively. Achieved increase in chromosome classification accuracy of 25.63% highlights importance of chromosome centromere detection, importance of positional variation removal, and high performance of CNN in prediction of centromere location and chromosome classification.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem123-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate determination of chromosome centromere location is of high importance in cytogenetics, particularly in karyotyping, chromosome classification and determination of exposure to genotoxic environmental effects. This study investigates the ability of CNN to accurately predict the human chromosome centromere location and the effect centering chromosomes in images, by predicted centromere location, has on classification accuracy. Dataset, used to train and test CNN models, contained 8283 annotated individual chromosome images. Prior to performing centromere detection, followed by chromosome classification, the individual chromosome images are preprocessed using sequence of filtering algorithms. The CNN model achieved an average error of 0.5586 and 0.4543 in predicting x and y coordinates of centromere location, respectively. The achieved classification accuracy of randomly oriented and centered chromosomes in images, is 71.10 and 96.73%, respectively. Achieved increase in chromosome classification accuracy of 25.63% highlights importance of chromosome centromere detection, importance of positional variation removal, and high performance of CNN in prediction of centromere location and chromosome classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用卷积神经网络预测人类染色体中的中心点位置
染色体着丝粒位置的准确测定在细胞遗传学中具有重要意义,特别是在核型分析、染色体分类和暴露于遗传毒性环境影响的测定中。本研究调查了CNN准确预测人类染色体着丝粒位置的能力,以及通过预测着丝粒的位置在图像中以染色体为中心对分类准确性的影响。用于训练和测试CNN模型的数据集包含8283张带注释的个体染色体图像。在进行着丝粒检测,然后进行染色体分类之前,使用一系列滤波算法对单个染色体图像进行预处理。CNN模型在预测着丝粒位置的x和y坐标时分别获得了0.5586和0.4543的平均误差。图像中随机定向和居中染色体的分类准确率分别为71.10%和96.73%。染色体分类准确率提高了25.63%,这突出了染色体着丝粒检测的重要性、位置变异去除的重要性,以及CNN在预测着丝粒位置和染色体分类方面的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
期刊最新文献
Relationship Between Computational and Critical Thinking Towards Modelling Competency Among Pre-Service Mathematics Teachers Neural Networks Applicability for Design of Reinforced Concrete Sections for Bending A Modified Approach for Forecasting Relative Humidity in Indoor Premises The Impact of Chatbots on Customer Satisfaction: A Systematic Literature Review Managing Environmental Noise with Mobile Noise Barriers - a Case Study of a Dolomite Quarry in Slovakia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1