{"title":"Global automorphic Sobolev theory and the automorphic heat kernel","authors":"A. DeCelles","doi":"10.1215/00192082-9082091","DOIUrl":null,"url":null,"abstract":"Heat kernels arise in a variety of contexts including probability, geometry, and functional analysis; the automorphic heat kernel is particularly important in number theory and string theory. The typical construction of an automorphic heat kernel as a Poincare series presents analytic difficulties, which can be dealt with in special cases (e.g. hyperbolic spaces) but are often sidestepped in higher rank by restricting to the compact quotient case. In this paper, we present a new approach, using global automorphic Sobolev theory, a robust framework for solving automorphic PDEs that does not require any simplifying assumptions about the rank of the symmetric space or the compactness of the arithmetic quotient. We construct an automorphic heat kernel via its automorphic spectral expansion in terms of cusp forms, Eisenstein series, and residues of Eisenstein series. We then prove uniqueness of the automorphic heat kernel as an application of operator semigroup theory. Finally, we prove the smoothness of the automorphic heat kernel by proving that its automorphic spectral expansion converges in the $C^\\infty$-topology.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9082091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Heat kernels arise in a variety of contexts including probability, geometry, and functional analysis; the automorphic heat kernel is particularly important in number theory and string theory. The typical construction of an automorphic heat kernel as a Poincare series presents analytic difficulties, which can be dealt with in special cases (e.g. hyperbolic spaces) but are often sidestepped in higher rank by restricting to the compact quotient case. In this paper, we present a new approach, using global automorphic Sobolev theory, a robust framework for solving automorphic PDEs that does not require any simplifying assumptions about the rank of the symmetric space or the compactness of the arithmetic quotient. We construct an automorphic heat kernel via its automorphic spectral expansion in terms of cusp forms, Eisenstein series, and residues of Eisenstein series. We then prove uniqueness of the automorphic heat kernel as an application of operator semigroup theory. Finally, we prove the smoothness of the automorphic heat kernel by proving that its automorphic spectral expansion converges in the $C^\infty$-topology.
期刊介绍:
IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers.
IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.