An Analysis of Crosswalks from Research Data Schemas to Schema.org

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-10-07 DOI:10.1162/dint_a_00186
Mingfang Wu, S. Richard, C. Verhey, L. J. Castro, Baptiste Cecconi, N. Juty
{"title":"An Analysis of Crosswalks from Research Data Schemas to Schema.org","authors":"Mingfang Wu, S. Richard, C. Verhey, L. J. Castro, Baptiste Cecconi, N. Juty","doi":"10.1162/dint_a_00186","DOIUrl":null,"url":null,"abstract":"ABSTRACT The increased number of data repositories has greatly increased the availability of open data. To enable broad discovery and access to research dataset, some data repositories have begun leveraging the web architecture by embedding structured metadata markup in dataset web landing pages using vocabularies from Schema.org and extensions. This paper aims to examine metadata interoperability for supporting global data discovery. Specifically, the paper reports a survey on which metadata schema has been adopted by participating data repositories, and presents an analysis of crosswalks from fourteen research data schemas to Schema.org. The analysis indicates most descriptive metadata are interoperable among the schemas, the most inconsistent mapping is the rights metadata, and a large gap exists in the structural metadata and controlled vocabularies to specify various property values. The analysis and collated crosswalks can serve as a reference for data repositories when they develop crosswalks from their own schemas to Schema.org, and provide the research data community a benchmark of structured metadata implementation.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"100-121"},"PeriodicalIF":1.3000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00186","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT The increased number of data repositories has greatly increased the availability of open data. To enable broad discovery and access to research dataset, some data repositories have begun leveraging the web architecture by embedding structured metadata markup in dataset web landing pages using vocabularies from Schema.org and extensions. This paper aims to examine metadata interoperability for supporting global data discovery. Specifically, the paper reports a survey on which metadata schema has been adopted by participating data repositories, and presents an analysis of crosswalks from fourteen research data schemas to Schema.org. The analysis indicates most descriptive metadata are interoperable among the schemas, the most inconsistent mapping is the rights metadata, and a large gap exists in the structural metadata and controlled vocabularies to specify various property values. The analysis and collated crosswalks can serve as a reference for data repositories when they develop crosswalks from their own schemas to Schema.org, and provide the research data community a benchmark of structured metadata implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从研究数据模式到Schema.org的交叉分析
摘要数据存储库数量的增加极大地提高了开放数据的可用性。为了实现对研究数据集的广泛发现和访问,一些数据存储库已经开始利用web架构,使用Schema.org和扩展中的词汇表在数据集web登录页中嵌入结构化元数据标记。本文旨在研究支持全局数据发现的元数据互操作性。具体而言,本文报告了一项关于参与的数据存储库采用了哪些元数据模式的调查,并对schema.org上的14个研究数据模式中的人行横道进行了分析。分析表明,大多数描述性元数据在模式之间是可互操作的,最不一致的映射是权利元数据,并且在用于指定各种属性值的结构元数据和受控词汇表中存在大的间隙。分析和整理的人行横道可以作为数据存储库在将自己的模式开发到Schema.org时的参考,并为研究数据社区提供结构化元数据实现的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1