Reliability-based serviceability limit state design of spread foundations under uplift loading in cohesionless soils

IF 6.5 3区 工程技术 Q1 ENGINEERING, GEOLOGICAL Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards Pub Date : 2023-01-09 DOI:10.1080/17499518.2023.2164900
Jayne M. Han, Kyo-Young Gu, Kyeong-Sun Kim, Kyung-Won Ham, Sung-Ryul Kim
{"title":"Reliability-based serviceability limit state design of spread foundations under uplift loading in cohesionless soils","authors":"Jayne M. Han, Kyo-Young Gu, Kyeong-Sun Kim, Kyung-Won Ham, Sung-Ryul Kim","doi":"10.1080/17499518.2023.2164900","DOIUrl":null,"url":null,"abstract":"ABSTRACT The design of foundations is often governed by the serviceability limit state (SLS) requirements of the supported structure, particularly for large spread foundations. This paper aims to develop a reliability-based SLS design method for spread foundations under uplift loading in cohesionless soils. A probabilistic framework was adopted for the empirical characterisation of the compiled load-displacement curves and the quantification of the associated uncertainties. By using the obtained statistics of the curves, reliability analysis was carried out with Monte-Carlo simulations to calibrate the resistance factors within the load and resistance factor design (LRFD) framework. The calibration results showed that the embedment ratio of the foundation and the fitting errors of the empirical model, which were previously unaddressed in the literature, had notable effects on the calibrated SLS resistance factors. The relationship of the SLS with the ultimate limit state was assessed, including the governing limit state at each allowable displacement level, and the probability of ultimate failure of the foundation at the SLS condition. By considering the relationship between the limit states, the procedures for determining the design resistance factor and foundation capacity were proposed.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2023.2164900","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The design of foundations is often governed by the serviceability limit state (SLS) requirements of the supported structure, particularly for large spread foundations. This paper aims to develop a reliability-based SLS design method for spread foundations under uplift loading in cohesionless soils. A probabilistic framework was adopted for the empirical characterisation of the compiled load-displacement curves and the quantification of the associated uncertainties. By using the obtained statistics of the curves, reliability analysis was carried out with Monte-Carlo simulations to calibrate the resistance factors within the load and resistance factor design (LRFD) framework. The calibration results showed that the embedment ratio of the foundation and the fitting errors of the empirical model, which were previously unaddressed in the literature, had notable effects on the calibrated SLS resistance factors. The relationship of the SLS with the ultimate limit state was assessed, including the governing limit state at each allowable displacement level, and the probability of ultimate failure of the foundation at the SLS condition. By considering the relationship between the limit states, the procedures for determining the design resistance factor and foundation capacity were proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可靠性的无粘性土中扬载作用下扩展基础的正常使用极限状态设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
10.40%
发文量
31
期刊介绍: Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.
期刊最新文献
Evaluating the Impact of Engineering Works in Megatidal Areas Using Satellite Images—Case of the Mont-Saint-Michel Bay, France Assessment of a Machine Learning Algorithm Using Web Images for Flood Detection and Water Level Estimates Digital geotechnics: from data-driven site characterisation towards digital transformation and intelligence in geotechnical engineering Induced Seismicity Hazard Assessment for a Potential CO2 Storage Site in the Southern San Joaquin Basin, CA Novel evaluation methodology for mechanical behaviour and instability risk of roof structure using limited investigation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1