Effy B John, K. Balaguru, L. Leung, G. Foltz, R. Hetland, S. Hagos
{"title":"Intensification of Hurricane Sally (2020) over the Mississippi River plume","authors":"Effy B John, K. Balaguru, L. Leung, G. Foltz, R. Hetland, S. Hagos","doi":"10.1175/waf-d-22-0191.1","DOIUrl":null,"url":null,"abstract":"\nTropical Cyclone (TC) Sally formed on September 11, 2020, traveled through the Gulf of Mexico (GMX), and intensified rapidly before making landfall on the Alabama coast as a devastating Category 2 TC with extensive coastal and inland flooding. In this study, using a combination of observations and idealized numerical model experiments, we demonstrate that the Mississippi River plume played a key role in the intensification of Sally near the northern Gulf coast. As the storm intensified and its translation slowed before landfall, sea surface cooling was reduced along its track, coincident with a pronounced increase in SSS. Further analysis reveals that TC Sally encountered a warm Loop Current eddy in the northern GMX close to the Mississippi River plume. Besides deepening the thermocline, the eddy advected low salinity Mississippi River plume water into the storm’s path. This resulted in the development of strong upper-ocean salinity stratification, with a shallow layer of fresh water lying above a deep, warm ‘barrier layer’. Consequently, TC-induced mixing and the associated sea surface cooling were reduced, aiding Sally’s intensification. These results suggest that the Mississippi River plume and freshwater advection by the Loop Current can play an important role in TC intensification near the US Gulf coast.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-22-0191.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Tropical Cyclone (TC) Sally formed on September 11, 2020, traveled through the Gulf of Mexico (GMX), and intensified rapidly before making landfall on the Alabama coast as a devastating Category 2 TC with extensive coastal and inland flooding. In this study, using a combination of observations and idealized numerical model experiments, we demonstrate that the Mississippi River plume played a key role in the intensification of Sally near the northern Gulf coast. As the storm intensified and its translation slowed before landfall, sea surface cooling was reduced along its track, coincident with a pronounced increase in SSS. Further analysis reveals that TC Sally encountered a warm Loop Current eddy in the northern GMX close to the Mississippi River plume. Besides deepening the thermocline, the eddy advected low salinity Mississippi River plume water into the storm’s path. This resulted in the development of strong upper-ocean salinity stratification, with a shallow layer of fresh water lying above a deep, warm ‘barrier layer’. Consequently, TC-induced mixing and the associated sea surface cooling were reduced, aiding Sally’s intensification. These results suggest that the Mississippi River plume and freshwater advection by the Loop Current can play an important role in TC intensification near the US Gulf coast.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.