{"title":"User Cold Start Recommendation System Based on Hofstede Cultural Theory","authors":"Yunfei Li, Shichao Yin","doi":"10.4018/ijwsr.321199","DOIUrl":null,"url":null,"abstract":"The main function of recommendation systems is to help users select satisfactory services from many services. Existing recommendation systems usually need to conduct a questionnaire survey of the user or obtain the user's third-party information in the case of cold start users; this operation often infringes on the user's privacy. This article is aimed at providing accurate recommendations for cold start users without infringement on user privacy. Therefore, in response to this problem, this manuscript per the authors proposes a recommendation algorithm based on Hofstede's cultural dimensions theory. The algorithm uses Hofstede's cultural dimensions theory to establish a connection between two cold start users, thus ensuring the stability of QoS prediction accuracy. Then, the prediction results and the dynamic combination of the matrix factorization algorithm are used to obtain a more accurate prediction. The verification results on the real dataset WS-Dream show that the prediction algorithm proposed in this paper effectively alleviates the user cold start problem.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.321199","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The main function of recommendation systems is to help users select satisfactory services from many services. Existing recommendation systems usually need to conduct a questionnaire survey of the user or obtain the user's third-party information in the case of cold start users; this operation often infringes on the user's privacy. This article is aimed at providing accurate recommendations for cold start users without infringement on user privacy. Therefore, in response to this problem, this manuscript per the authors proposes a recommendation algorithm based on Hofstede's cultural dimensions theory. The algorithm uses Hofstede's cultural dimensions theory to establish a connection between two cold start users, thus ensuring the stability of QoS prediction accuracy. Then, the prediction results and the dynamic combination of the matrix factorization algorithm are used to obtain a more accurate prediction. The verification results on the real dataset WS-Dream show that the prediction algorithm proposed in this paper effectively alleviates the user cold start problem.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.