Flotation separation depressants for scheelite and calcium-bearing minerals: A review

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Minerals, Metallurgy, and Materials Pub Date : 2023-08-25 DOI:10.1007/s12613-023-2613-x
Ziming Wang, Bo Feng, Yuangan Chen
{"title":"Flotation separation depressants for scheelite and calcium-bearing minerals: A review","authors":"Ziming Wang,&nbsp;Bo Feng,&nbsp;Yuangan Chen","doi":"10.1007/s12613-023-2613-x","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to the depletion of wolframite, the focus of tungsten extraction has gradually shifted to scheelite. However, separating the associated minerals (e.g., apatite, fluorite, and calcite) and scheelite is challenging because their surface physicochemical properties are similar to those of scheelite. Fortunately, researchers have made substantial progress in separating the minerals of scheelite by using depressants. This study reviews the application and inhibition mechanism of inorganic depressants in obtaining tungsten from its calcium-bearing minerals. The application of new organic depressants in obtaining tungsten from its calcium-bearing minerals and the associated mechanisms are also summarized. After an objective assessment of inorganic and organic depressants’ advantages and disadvantages, possible future research directions for inorganic and organic depressants are proposed. Herein, we provide a theoretical basis for developing scheelite flotation depressants.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 9","pages":"1621 - 1632"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2613-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Owing to the depletion of wolframite, the focus of tungsten extraction has gradually shifted to scheelite. However, separating the associated minerals (e.g., apatite, fluorite, and calcite) and scheelite is challenging because their surface physicochemical properties are similar to those of scheelite. Fortunately, researchers have made substantial progress in separating the minerals of scheelite by using depressants. This study reviews the application and inhibition mechanism of inorganic depressants in obtaining tungsten from its calcium-bearing minerals. The application of new organic depressants in obtaining tungsten from its calcium-bearing minerals and the associated mechanisms are also summarized. After an objective assessment of inorganic and organic depressants’ advantages and disadvantages, possible future research directions for inorganic and organic depressants are proposed. Herein, we provide a theoretical basis for developing scheelite flotation depressants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白钨矿和含钙矿物浮选分离抑制剂研究进展
随着黑钨矿的枯竭,提钨的重点逐渐转向白钨矿。然而,分离伴生矿物(如磷灰石、萤石和方解石)和白钨矿是具有挑战性的,因为它们的表面物理化学性质与白钨矿相似。幸运的是,研究人员在使用抑制剂分离白钨矿矿物方面取得了实质性进展。本文综述了无机抑制剂在含钙矿物制钨中的应用及其抑制机理。综述了新型有机抑制剂在含钙矿物制钨中的应用及其机理。在客观评价了无机和有机抑制剂的优缺点后,提出了无机和有机抑制剂未来可能的研究方向。为白钨矿浮选抑制剂的研制提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
期刊最新文献
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1