Jorge Otta Junior, Leandro Augusto de Carvalho, Pedro Luíz de Paula Filho, G. V. Miranda
{"title":"Wetting front of soil infiltration test by real-time sensing in prototype system real-time wetting front in soil infiltration tests","authors":"Jorge Otta Junior, Leandro Augusto de Carvalho, Pedro Luíz de Paula Filho, G. V. Miranda","doi":"10.13083/reveng.v30i1.14005","DOIUrl":null,"url":null,"abstract":"Agriculture is the most water-demanding economic activity. Nevertheless, the monitoring of agricultural production systems can improve the soil water condition and contribute to soil conservation, as well as increase irrigation efficiency through quick and assertive decision-making. Thus, the objective of this work was to carry out a real-time evaluation of the wetting front (WF), the water infiltration rate in the soil, and to verify whether the system performance can affect infiltration test data in a Red Latosol with clayey and very clayey textures. The public domain prototype system consisted of a permeameter, and 10 soil moisture sensors that were calibrated by the oven drying method and inserted into a PVC pipe from 10 cm to 100 cm depth. The equipment allowed the evaluation of the wetting front and calculation of the infiltration rate and water retention and variations along the soil profile. Data were analyzed using descriptive statistics using RStudio and Excel. The results showed that the prototype system is effective to simulate the water infiltration rate in the two soil textures analyzed at low cost.","PeriodicalId":33461,"journal":{"name":"Engenharia na Agricultura","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia na Agricultura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13083/reveng.v30i1.14005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture is the most water-demanding economic activity. Nevertheless, the monitoring of agricultural production systems can improve the soil water condition and contribute to soil conservation, as well as increase irrigation efficiency through quick and assertive decision-making. Thus, the objective of this work was to carry out a real-time evaluation of the wetting front (WF), the water infiltration rate in the soil, and to verify whether the system performance can affect infiltration test data in a Red Latosol with clayey and very clayey textures. The public domain prototype system consisted of a permeameter, and 10 soil moisture sensors that were calibrated by the oven drying method and inserted into a PVC pipe from 10 cm to 100 cm depth. The equipment allowed the evaluation of the wetting front and calculation of the infiltration rate and water retention and variations along the soil profile. Data were analyzed using descriptive statistics using RStudio and Excel. The results showed that the prototype system is effective to simulate the water infiltration rate in the two soil textures analyzed at low cost.