Secure Comparisons of Single Nucleotide Polymorphisms Using Secure Multiparty Computation: Method Development.

Andrew Woods, Skyler T Kramer, Dong Xu, Wei Jiang
{"title":"Secure Comparisons of Single Nucleotide Polymorphisms Using Secure Multiparty Computation: Method Development.","authors":"Andrew Woods, Skyler T Kramer, Dong Xu, Wei Jiang","doi":"10.2196/44700","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While genomic variations can provide valuable information for health care and ancestry, the privacy of individual genomic data must be protected. Thus, a secure environment is desirable for a human DNA database such that the total data are queryable but not directly accessible to involved parties (eg, data hosts and hospitals) and that the query results are learned only by the user or authorized party.</p><p><strong>Objective: </strong>In this study, we provide efficient and secure computations on panels of single nucleotide polymorphisms (SNPs) from genomic sequences as computed under the following set operations: union, intersection, set difference, and symmetric difference.</p><p><strong>Methods: </strong>Using these operations, we can compute similarity metrics, such as the Jaccard similarity, which could allow querying a DNA database to find the same person and genetic relatives securely. We analyzed various security paradigms and show metrics for the protocols under several security assumptions, such as semihonest, malicious with honest majority, and malicious with a malicious majority.</p><p><strong>Results: </strong>We show that our methods can be used practically on realistically sized data. Specifically, we can compute the Jaccard similarity of two genomes when considering sets of SNPs, each with 400,000 SNPs, in 2.16 seconds with the assumption of a malicious adversary in an honest majority and 0.36 seconds under a semihonest model.</p><p><strong>Conclusions: </strong>Our methods may help adopt trusted environments for hosting individual genomic data with end-to-end data security.</p>","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":" ","pages":"e44700"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/44700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: While genomic variations can provide valuable information for health care and ancestry, the privacy of individual genomic data must be protected. Thus, a secure environment is desirable for a human DNA database such that the total data are queryable but not directly accessible to involved parties (eg, data hosts and hospitals) and that the query results are learned only by the user or authorized party.

Objective: In this study, we provide efficient and secure computations on panels of single nucleotide polymorphisms (SNPs) from genomic sequences as computed under the following set operations: union, intersection, set difference, and symmetric difference.

Methods: Using these operations, we can compute similarity metrics, such as the Jaccard similarity, which could allow querying a DNA database to find the same person and genetic relatives securely. We analyzed various security paradigms and show metrics for the protocols under several security assumptions, such as semihonest, malicious with honest majority, and malicious with a malicious majority.

Results: We show that our methods can be used practically on realistically sized data. Specifically, we can compute the Jaccard similarity of two genomes when considering sets of SNPs, each with 400,000 SNPs, in 2.16 seconds with the assumption of a malicious adversary in an honest majority and 0.36 seconds under a semihonest model.

Conclusions: Our methods may help adopt trusted environments for hosting individual genomic data with end-to-end data security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用安全多方计算对单核苷酸多态性进行安全比较(预印本)
背景:虽然基因组变异可以为医疗保健和祖先提供有价值的信息,但个人基因组数据的隐私必须得到保护。因此,人类 DNA 数据库需要一个安全的环境,使所有数据可以查询,但相关方(如数据主机和医院)不能直接访问,只有用户或授权方才能了解查询结果:在这项研究中,我们提供了对基因组序列中单核苷酸多态性(SNPs)面板的高效安全计算,计算方法包括以下集合运算:联合、交集、集合差和对称差:利用这些运算,我们可以计算出相似度指标,如 Jaccard 相似度,从而可以查询 DNA 数据库,安全地找到同一个人和遗传亲属。我们分析了各种安全范式,并展示了在半诚信、恶意与诚信多数、恶意与恶意多数等几种安全假设下的协议度量:我们的研究结果表明,我们的方法可以实际应用于真实大小的数据。具体来说,当考虑到 SNPs 集(每个 SNPs 集有 400,000 个 SNPs)时,我们可以在 2.16 秒内计算出两个基因组的 Jaccard 相似度(假设恶意对手处于诚实多数),而在半诚实模型下只需 0.36 秒:我们的方法有助于采用可信环境来托管具有端到端数据安全性的个体基因组数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Effect of a Web-Based Heartfulness Program on the Mental Well-Being, Biomarkers, and Gene Expression Profile of Health Care Students: Randomized Controlled Trial. Eco-Evolutionary Drivers of Vibrio parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach. Exploring the Intersection of Schizophrenia, Machine Learning, and Genomics: Scoping Review. Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots Through Large Language Models. Enhancing Suicide Risk Prediction With Polygenic Scores in Psychiatric Emergency Settings: Prospective Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1