Current and future perspectives of chimeric antigen receptors against glioblastoma

IF 4.1 Q2 IMMUNOLOGY Immunotherapy advances Pub Date : 2022-06-01 DOI:10.1093/immadv/ltac014
Josephine Zhang, Jesús A. Siller-Farfán
{"title":"Current and future perspectives of chimeric antigen receptors against glioblastoma","authors":"Josephine Zhang, Jesús A. Siller-Farfán","doi":"10.1093/immadv/ltac014","DOIUrl":null,"url":null,"abstract":"Abstract Glioblastoma multiforme (GBM) is the most malignant form of cancer in the central nervous system; even with treatment, it has a 5-year survival rate of 7.2%. The adoptive cell transfer (ACT) of T cells expressing chimeric antigen receptors (CARs) has shown a remarkable success against hematological malignancies, namely leukemia and multiple myeloma. However, CAR T cell therapy against solid tumors, and more specifically GBM, is still riddled with challenges preventing its widespread adoption. Here, we first establish the obstacles in ACT against GBM, including on-target/off-tumor toxicity, antigen modulation, tumor heterogeneity, and the immunosuppressive tumor microenvironment. We then present recent preclinical and clinical studies targeting well-characterized GBM antigens, which include the interleukin-13 receptor α2 and the epidermal growth factor receptor. Afterward, we turn our attention to alternative targets in GBM, including less-explored antigens such as B7-H3 (CD276), carbonic anhydrase IX, and the GD2 ganglioside. We also discuss additional target ligands, namely CD70, and natural killer group 2 member D ligands. Finally, we present the possibilities afforded by novel CAR architectures. In particular, we examine the use of armored CARs to improve the survival and proliferation of CAR T cells. We conclude by discussing the advantages of tandem and synNotch CARs when targeting multiple GBM antigens.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltac014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Glioblastoma multiforme (GBM) is the most malignant form of cancer in the central nervous system; even with treatment, it has a 5-year survival rate of 7.2%. The adoptive cell transfer (ACT) of T cells expressing chimeric antigen receptors (CARs) has shown a remarkable success against hematological malignancies, namely leukemia and multiple myeloma. However, CAR T cell therapy against solid tumors, and more specifically GBM, is still riddled with challenges preventing its widespread adoption. Here, we first establish the obstacles in ACT against GBM, including on-target/off-tumor toxicity, antigen modulation, tumor heterogeneity, and the immunosuppressive tumor microenvironment. We then present recent preclinical and clinical studies targeting well-characterized GBM antigens, which include the interleukin-13 receptor α2 and the epidermal growth factor receptor. Afterward, we turn our attention to alternative targets in GBM, including less-explored antigens such as B7-H3 (CD276), carbonic anhydrase IX, and the GD2 ganglioside. We also discuss additional target ligands, namely CD70, and natural killer group 2 member D ligands. Finally, we present the possibilities afforded by novel CAR architectures. In particular, we examine the use of armored CARs to improve the survival and proliferation of CAR T cells. We conclude by discussing the advantages of tandem and synNotch CARs when targeting multiple GBM antigens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶质母细胞瘤嵌合抗原受体的研究现状与展望
摘要多形性胶质母细胞瘤(GBM)是中枢神经系统中最恶性的癌症;表达嵌合抗原受体(CARs)的T细胞的过继细胞转移(ACT)已显示出对血液系统恶性肿瘤,即白血病和多发性骨髓瘤的显著成功。然而,CAR T细胞治疗实体瘤,尤其是GBM,仍然面临着阻碍其广泛应用的挑战。在这里,我们首先建立了ACT对抗GBM的障碍,包括靶向/肿瘤外毒性、抗原调节、肿瘤异质性和免疫抑制肿瘤微环境。然后,我们介绍了最近针对特征良好的GBM抗原的临床前和临床研究,这些抗原包括白细胞介素13受体α2和表皮生长因子受体。之后,我们将注意力转向GBM中的替代靶点,包括较少探索的抗原,如B7-H3(CD276)、碳酸酐酶IX和GD2神经节苷脂。我们还讨论了额外的靶配体,即CD70和自然杀伤第2组成员D配体。最后,我们展示了新型CAR架构所提供的可能性。特别是,我们研究了使用铠装CAR来提高CAR T细胞的存活和增殖。最后,我们讨论了串联和synNotch CARs在靶向多种GBM抗原时的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Systematic review and meta-analysis of COVID-19 mRNA vaccine effectiveness against hospitalizations in adults. Hyperactivation of the PI3K pathway in inborn errors of immunity: current understanding and therapeutic perspectives. High-affinity T cell receptor ImmTAC® bispecific efficiently redirects T cells to kill tumor cells expressing the cancer-testis antigen PRAME. A rapid method to assess the in vivo multi-functionality of adoptively transferred engineered TCR T cells. Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1