Kevin K. Huguenin-Dumittan, Philip Loche, Ni Haoran and Michele Ceriotti*,
{"title":"Physics-Inspired Equivariant Descriptors of Nonbonded Interactions","authors":"Kevin K. Huguenin-Dumittan, Philip Loche, Ni Haoran and Michele Ceriotti*, ","doi":"10.1021/acs.jpclett.3c02375","DOIUrl":null,"url":null,"abstract":"<p >One essential ingredient in many machine learning (ML) based methods for atomistic modeling of materials and molecules is the use of locality. While allowing better system-size scaling, this systematically neglects long-range (LR) effects such as electrostatic or dispersion interactions. We present an extension of the long distance equivariant (LODE) framework that can handle diverse LR interactions in a consistent way and seamlessly integrates with preexisting methods by building new sets of atom centered features. We provide a direct physical interpretation of these using the multipole expansion, which allows for simpler and more efficient implementations. The framework is applied to simple toy systems as proof of concept and a heterogeneous set of molecular dimers to push the method to its limits. By generalizing LODE to arbitrary asymptotic behaviors, we provide a coherent approach to treat arbitrary two- and many-body nonbonded interactions in the data-driven modeling of matter.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 43","pages":"9612–9618"},"PeriodicalIF":4.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02375","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
One essential ingredient in many machine learning (ML) based methods for atomistic modeling of materials and molecules is the use of locality. While allowing better system-size scaling, this systematically neglects long-range (LR) effects such as electrostatic or dispersion interactions. We present an extension of the long distance equivariant (LODE) framework that can handle diverse LR interactions in a consistent way and seamlessly integrates with preexisting methods by building new sets of atom centered features. We provide a direct physical interpretation of these using the multipole expansion, which allows for simpler and more efficient implementations. The framework is applied to simple toy systems as proof of concept and a heterogeneous set of molecular dimers to push the method to its limits. By generalizing LODE to arbitrary asymptotic behaviors, we provide a coherent approach to treat arbitrary two- and many-body nonbonded interactions in the data-driven modeling of matter.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.